UNCLASSIFIED AD 268 246 Reproduced by the ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. MONITORING AGENCY DOCUMENT NO. ASTIA DOCUMENT NO. 268246 TITLE OF REPORT Solid State Chemical Reactions (with special reference to the kinetics of the reaction of inorganic oxidants with poly-divinylbenzene). NAME OF AUTHORS Saul Patai and Harold Cross NAME OF ORGANIZATION The Hebrew University Jerusalem, Israel TECHNICAL (SCIENTIFIC) NOTE NO. 2 CONTRACT NO.AF 61(052)-143. DATE OF REPORT July, 1961 CREDIT LINE The research reported in this document has been supported in part by the AERONAUTICAL RESEARCH LABORATORY of the OFFICE OF AEROSPACE RESEARCH, UNITED STATES AIR FORCE through its European Office FURLE, MILUUSI --- . ASTIA DEC 20 mb AITS # TABLE OF CONTENTS | | Page | |--|------| | ABSTRACT | 1 | | INTRODUCTION | 2 | | RESULTS and DISCUSSION | 10 | | I. Preliminary Investigations of Solid-Solid | | | Reactions | 10 | | (a), (b) Polycyclic Aromatic Hydrocarbons | 11 | | (c) Sodium Hexahydrobenzoate | 11 | | (d) Other Substances | 13 | | (e) Polymers | 13 | | II. The Solid-Solid Reaction Between pDVB and
Various Oxidants: | | | A. KClO ₄ as Oxidant | 14 | | (a) Determination of Ignition Temperatures | 14 | | (b) Effects of Different Catalysts | 15 | | Rate Law | 19 | | (d) Effect of Catalyst Concentration | 29 | | (e) Blank determinations | 29 | | (f) Reproducibility and Experimental Error | 37 | | B. KClO ₃ as Oxidant | 38 | | (a) Ignition Temperatures | 38 | | (b) Effects of Catalysts | 38 | | (c) Effect of Catalyst Concentration | 48 | | (d) Kinetics and Rate Law | 52 | | (e) Blank Determinations | 52 | | (f) Reproducibility and Experimental Error | 54 | | C. KIO ₃ as Oxidant | 55 | | (a) Effects of Catalysts | 55 | | (b) Kinetics and Rate Law | 56 | | D. KBrO ₃ as Oxidant | 60 | | (a) Ignition Times(b) Effects of Catalysts; Kinetics and | 60 | | Rate Law | 60 | 1 | | | rage | |--------|--|------| | | E. Comparison of Effects of Catalysts
on Oxidation of pDVB by KClO ₄ ,
KClO ₃ , KIO ₃ and KBrO ₃ | 66 | | | F. The Role of the Catalyst and Inhibitor in Solid-Solid Reactions | 72 | | EXPERI | MENTAL | | | (a) | Materials and Methods | 82 | | (b) | Typical Kinetic Data and Calculations | 85 | | REFTRI | ENCES | 89 | . , #### Abstract The heterogeneous reaction in the solid phase of various high melting organic substances with solid oxidants in the presence of catalysts was investigated. Oxidants used were potassium perchlorate, potassium bromate, potassium nitrate, potassium chlorate, potassium iodate, chloranil and selenium dioxide. The substrates used were polycyclic aromatic compounds and polymers, in particular a co-polymer of p-divinylbenzene and p-ethylstyrene. A large number of high-melting substances, e.g. inorganic salts, oxides and metal powders were tried as catalysts for the reaction. It was found that as a rule Lewis acids (Al₂(SO₄)₃, Fe Cl₂, etc.) catalyzed the reaction while basic substances (Na₂CO₃, LiOH, etc.) inhibited it. The empirical equation $$dx/dt = k (a-x)/x^2/3$$ was found to fit the kinetic curves for the catalyzed $KClO_4$, KIO_3 and $KBrO_3$ oxidations of pDVB and the zero order equation $$dx/dt = k$$ was found to fit the kinetic data for the catalyzed KClO₃ oxidation of pDVB. #### INTRODUCTION #### (a) Solid State Reactions in General Reactions in the solid phase were first observed by Faraday and Stodart⁽⁷⁾ in the diffusion in metals at high temperatures and by Spring⁽⁵⁶⁾ in the reactions between inorganic solids. The first extensive studies of reactions in the solid state were by Tammann^(9, 57, 58) whose concept of the mechanism involved was a diffusion occurring by "Platzwechsel" of the atoms. He proposed that the minimum temperatures at which this exchange took place were 0.3Ts for metals, 0.5Ts for oxides, salts and some silicates and as high as 0.9Ts for some organic molecules, where Ts is the melting point in ^OK. In the past 50 years intensive investigations have been carried out in the solid state as evidenced by the monographs of Hedvall (24) and Garner (11). It is generally accepted that solidstate reactions do occur but some workers have disputed that the mechanism of the reaction is directly between solids. Ginstling et al (14, 15, 47, 48, 49) hold the viewpoint that solid state reactions between powdered solids are unlikely processes except at very high temperatures since the contact area between the particles presents too small a cross-section for rapid diffusion. They claim that these so-called solid reactions occur by a vaporization mechanism. Borchardt⁽²⁾ developed criteria whereby it is possible to determine definitely when a vaporization method <u>cannot</u> be the principal mode of mass transport so that Ginstling's generalization for these powder reactions is questionable. Ginstling and co-workers based their conclusions on experiments in which the conditions were changed from those of the workers who proposed a solid state mechanism for the same reactions. Borchardt found that for U_3O_8 —metal mixtures, the dissociation temperature for U_3O_8 was much higher than the temperatures used in the reactions. Thus if the only alternative mechanism involves solid state diffusion processes then it would follow that the reactions are truly in the solid state. The classical studies of reactions in the solid state by Tammann (loc. sit) treated on the equilibrium conditions involved. The basic tenet was that reactions in the solid state proceed exothermically until a considerable fraction of the reactants is consumed. Complete reaction is difficult to achieve, usually, because of the barrier of the product layer between the reactants. Thus, except for cases of miscibility of reactants and product phases, equilibrium is usually not possible in reactions in the solid state. Tammann postulated that a product layer is formed during most solid-solid reactions having a rate of growth dl/dt = b/t where 1 is the thickness of the product layer, t is the heating time and b a temperature-dependent factor. Jander (29) developed this relationship a step further, giving the reaction rate in terms of rate of growth of the product layer, or $$dy/dt = k/y$$ where y is the thickness of the product layer between the two reactants. The equation in its integrated form is $y^2 = 2kt$. Jander further treated on the processes of diffusion in solid state reactions when the reacting systems consist in mixtures of fine powders containing one of the reactants in large excess and proposed a relationship whereby the rate constant of a reaction is given by: $$\left(1-\sqrt[3]{1-\alpha t}\right)^2 = \frac{C}{R^2} t = C''t$$ where **c** = fraction of completion of reaction and R = grain radius of the minor component assumed to be monodisperse and completely surrounded by the excess reactant. The rate constants determined by these or other equations are more or less structure-sensitive and cannot be employed directly to establish a reaction mechanism for two particular reasons. One, the phase boundary processes are complex and irreproducible, and two, the participating phases are usually not in equilibrium internally. The state of solid surfaces and the degree of contact between them are so irreproducible and vague that the phase boundary processes cannot be controlled. The lack of internal equilibrium is due to lattice disturbances and the energy required for their motion is lower than the migration energy of particles in equilibrium. The kinetics of solid state reactions will depend on the diffusion of the components and will be affected by either of two possibilities: - (a) The processes occurring at the phase boundaries are infinitely rapid compared with the diffusion velocity and equilibrium is constantly established at the boundaries so that the diffusion in the product layer is rate-determining. - (b) The processes occurring at the phase boundaries are <u>not</u> infinitely rapid compared with the diffusion velocity so that both the diffusion and the boundary processes are rate-determining. Reaction mechanisms are discussed, for the above reasons, for solids internally in equilibrium and the theories applied thereafter to the reactions of non-equilibrium solids. The mechanisms obtained offer a qualitative basis for the understanding of reactions of non-equilibrium solids (Cohn⁽³⁾). Mechanisms of reactions in the solid state have been studied extensively by Tammann, by Hedvall⁽²⁴⁾, by Jander^(29, 30), by Jost⁽³¹⁾ and by Wagner⁽⁶²⁾. In general these reactions are interpreted as occurring by the movement of ns and electrons. The influence of disorder and dislocation is very greatly stressed. # (b) The decomposition and reactions of perchlorates and allied substances in the solid phase The first investigations of the reactions and decompositions of perchlorates and other oxygen rich substances by Heinrich⁽²⁶⁾, Crespi and Caamano⁽⁴⁾, Heertjes and Houtmann⁽²⁵⁾, Elliott⁽⁶⁾, Spice and Staveley⁽⁵⁵⁾, Hofmann and Marin⁽²⁸⁾, Schneider⁽⁵²⁾, Otto and Fry⁽³⁷⁾, Kendall
and Fuchs⁽³²⁾, Marvin and Woolaver⁽³⁶⁾, Taradoire⁽⁵⁹⁾, were mainly observations of the decomposition points of the various substances, their behavior in the presence of combustible substances and the effect of foreign ions on the decompositions. The first fully detailed studies of the decomposition of perchlorates and allied substances, including kinetics of the decomposition were by Glasner and Simchen (16, 17), Glasner and Weidenfeld (18) and Bircumshaw and Phillips (1). Bircumshaw and Phillips found the critical influence of impurities, especially KCl, in the decomposition of KClO₄. They state that the usual theories derived for chemical reactions involving solid decompositions are inapplicable at the high temperatures which lead to a molten system and considerable variation of experimental results. The researches of Glasner and Simchen and of Glasner and Weidenfeld along same lines find more or less the same effects due to KCl and propose an equation similar to that of Prout and Tompkins (50). The Prout and Tompkins equation, for the decomposition of KMnO₄ crystals, is a modified auto-catalytic expression dx/dt = kx/a(a-x) Glasner and Weidenfeld propose that in the decomposition of potassium chlorate, potassium perchlorate is formed by transfer of atomic oxygen from the chlorate ion to a chloride ion. Vanden Bosch and Aten⁽⁶¹⁾, by labelling isotopically the oxygen of chlorate found that this did not occur. In the decomposition of potassium perchlorate, Harvey et al (20, 21) found that chlorate was formed as an intermediate which then decomposes to chloride. The decomposition of perchlorate is the rate-determining step as shown by the fact that the concentration of chlorate remains low. In these laboratories the reaction of KClO₄, KClO₃ and KNO₃ with various combustible substances, with and without catalysts has been studied by Patai and co-workers (39-46). Various mathematical relationships were proposed and various mechanisms were postulated. In the reaction between potassium perchlorate and carbon the empirical rate equation $$dx/dt = k (a-x)^{2/3} / x^{1/3}$$ was proposed $^{(44)}$. The reaction rate was found to be influenced by the initial ratio of the reactants, the amount of potassium chloride formed and the radius of the perchlorate particles. Patai and Rajbenbach $^{(42)}$ investigated the effects of various catalysts on the same solid-solid reactions and found that the kinetics followed the Tammann equation dy/dt = k/y. The mode of action of the catalysts was interpreted as being due either to their migration into the reacting substances with consequent weakening of the valence bonds of the reacting atoms (paralleling the effect of catalysts on the thermal decomposition of solids) or to their participation in the transition complex of the two reactants with consequent lowering of energy of activation of the complex-formation or due to an oxygencarrying role. Fukushima and Horibe⁽⁸⁾ investigated the mechanism of the catalytic action of manganese dioxide on the decomposition of potassium chlorate using heavy anygen as an isotopic tracer. They concluded that an unstable intermediate compound is formed between KClO₃ and MnO₂ and that gaseous O is evolved by the decomposition of this intermediate. The influence of catalysts on solid-solid reactions is a very new field. Hedvall⁽²³⁾ points out the recent advances in the understanding of the nature of catalytic processes. Emphasis on the mobility of electrons at surfaces and the exchange of electrons at phase boundaries between catalyst and substrate has been made in the most recent researches. Such treatment of these processes is given by De Bruijn⁽⁵⁾ for catalytic reactions on inhomogeneous surfaces and by Hauffe⁽²²⁾ in the role of various oxides and sulfides as heterogeneous catalysts. #### RESULTS AND DISCUSSION #### I. Preliminary Experiments At the beginning of the work, experiments were carried out on solid-solid reactions between oxidants and various organic substrates, especially polycyclic compounds, in the presence and absence of catalysts with the view to finding whether reactions in the solid phase gave the same products as in a homogeneous reaction in solution. The number of substrates was very limited because only a few such organic compounds remain solid and do not undergo thermal decomposition at the high temperatures necessary for the reactions. These first reactions were studied qualitatively and the work on them was not extended. It was seen that the products of the reaction were such as to complicate any kinetic study unduly. Preliminary reactions between KClO₄ and various polymers showed that a suitably high melting polymer would be the ideal substrate for the present study since the course of the reaction would be most likely solid + solid → gas + solid and/or solid + solid → solid + solid A kinetic study of such types of reactions would be feasible. The main types of preliminary experiments carried out were as follows: #### (a) Anthracene and selenium dioxide These mixtures melted at less than 150° and in order to carry out the reactions in the solid phase they were heated at temperatures up to 120°C. From 100-120°C some high-melting material was formed, but could not be identified, owing to the difficulties of separation and the very small amount obtained. Most of the anthracene remained unchanged. The ultraviolet spectrum of the product indicated the presence of traces of anthraquinone. # (b) Chrysene and KClO₄. There was no reaction of chrysene with KClO_4 either in the absence or in the presence of added substances $(\mathrm{K_2CO}_3,\ \mathrm{Fe_2(SO}_4)_3)$ and LiC1) at $200^{\mathrm{O}}\mathrm{C}$. The starting materials were recovered unchanged. (c) Sodium cyclohexylcarboxylate with KClO₄, KNO₃, SeO₂ and chloranil (tetrachlorobenzoquinone). The products were studied spectrophotometrically. The U.V. spectrum revealed the formation of benzoic acid. In a typical experiment, a tablet containing about 650 mg of KClO₄, 300 mg of $C_6H_{11}COONa$ and 30 mg of $Fe_2(SO_4)_3$ was heated at $320^{\circ}C$ in a closed tube for 22 hours. Analyses for chloride showed that 23% of the perchlorate had reacted and about 60 mg of benzoic acid were obtained, identified by melting point, mixed melting point and WV. spectrum. The tablet remained mechanically stable throughout the reaction and only a small amount of brown insoluble carbonaceous material was formed. At higher temperatures the mixtures reacted explosively (at $340^{\circ}C$ in the presence of the above-stated amount of $Fe_2(SO_4)_3$ and at $360-370^{\circ}C$ in the absence of catalyst). At $340^{\circ}-350^{\circ}$ up to 100% of the $KClO_4$ decomposed even in uncatalyzed reactions, after 20-24 hours, but the organic product was entirely a black carbonaceous material. At lower temperatures the reaction was slow but the presence of benzoic acid was revealed in the product by its U.V. Similar results were obtained from mixtures of KNO $_3$ and C $_6$ H $_{11}$ COONa with Fe $_2$ (SO $_4$) $_3$ at 225-300 $^{\rm O}$ C and also with mixtures of SeO $_2$ and C $_6$ H $_{11}$ COONa at 200 $^{\rm O}$ C but in the latter case the mixture fused and the reaction probably took place in the molten phase. Using chloranil (m.p. 290°) as the oxidant, with C_6H_1COONa at $140-200^{\circ}C$ (16-20 hours heating), 15-20% of benzoic acid were obtained. Other substances: Oxamide and KClO₄ did not react at 300°C and gave only 1.2-1.6% reaction (analyzed for chloride) at 325° to 400°. Dicyclohexylamine hydrochloride with KClO₄ reacted explosively at 250° and decomposed completely at as low as 200-220°C. At lower temperatures (170-180°) the starting materials were recovered unchanged. (e) Polymers: Various polymers were repared with the view to finding a heat stable and high melting polymer suitable for reactions with various oxidants in the solid state. Polymers from indene, vinylnaphthalene, cinnamal fluorene, acenaphthene and acenaphthylene were prepared. Copolymers from vinylnaphthalene/divinylbenzene (DVB), styrene/DVB and acenaphthylene/DVB were also prepared. As none of these had a sufficiently high melting point for reaction with KClO₄ in the solid phase, it was decided to use a copolymer of 40 % DVB and 60 % p-ethylstyrene (henceforth called pDVB or polydivinylbenzene) and to investigate its oxidation in the presence of various catalysts. The remaining work was the study of this catalyzed reaction using KClO₄, KClO₃, KBrO₃ and KlO₃ as the oxidants and a large number of inorganic and organic substances of suitably high melting-points as the catalysts. II. The Catalyzed Solid Solid Reaction Between pDVB and Various Inorganic Oxidants ## A. KClO as Oxidant. #### (a) Ignition Times and Temperatures The various mixtures of KClO₄-pDVB-catalyst were heated at various temperatures until they ignited (see Experimental Part for details). The results are shown in Table 1, page 16, arranged in descending order of flammability. As a comparison is made with samples not containing an added substance, the table serves as an assessment of the relative catalytic activities of the added substances. The table shows that most of the Cl and SO₄ salts used are catalysts, with the exceptions of NaCl, KCl, and possibly PbCl₂ and PbSO₄. Kl appears higher in the table than other slkali metal halides. Otherwise there is agreement in the results for compounds of the same classes. Metal powders and basic substances inhibit the reaction. There appears to be an influence of both the cation and the anion in the effect of the added substances. Thus PbCl₂ and PbSO₄ are low in the table as compared with salts of other metals and Kl is high while KBr is low. Similarly, among the metal powders Cu appears to be far less inhibitory than Zn or Al, and as the densities and the surface areas of the additives Cu and Zn are very similar the difference in their effects might depend on physical properties
affecting the diffusion rate. The effects of the added substances in the ignition tests are paralleled by the results for the same mixtures in kinetic runs at lower temperatures and in vacuum (see section (b) of Discussion of Results). The time lag required for the temperatures of the samples to rise to the ignition temperatures was not taken into account in the figures presented in the table. This period will be approximately the same for samples of the same size and should be in the neighborhood of 12 seconds, the time required for ignition at very high temperatures, when samples ignite as soon as they reach the ignition temperature. #### (b) Effects of added substances on the rate of reaction. The effects of various catalysts are compared according to the rate constants of the reaction in Tables 2, 3, 4, 5, pages 20-23. Some of the typical results are represented in Figure 1, page 25. Table 2 shows that the oxides Fe_2O_3 , Cr_2O_3 and MnO_2 either do not affect the rate or else lower the rate while V_2O_5 , LiCl and $Fe_2(SO_4)_3$ catalyze the rate to more than eight times the uncatalyzed rate. | • | • | |---|---| | 1 | 9 | | 1 | Į | | | 9 | |----------|------| | | Ì | | | 1 | | | 4000 | | 5 | | | 1 101.10 | | | ~• | | | | | | | | Ä | The of Imitien (Seconds) | i i | 3
8 | (spec | | | | | | | | | |----------|--|----------|----------|----|-----|--------------------------|-----|--------|----------|----------|---------|----|-----|-----|-----|----|---| | jė | Catalyst | Tamp. oc | % | 8 | 410 | 450 | 430 | 3 | 8 | 9 | 040 440 | 8 | 064 | 86 | 520 | â | 8 | ** | 429 | | | | | 5 | \$ | • | | | | | | | | | | | 11.71.11 | 81,97.71 A1 ₂ (80 ₄) ₃ | | 8 | 84 | 85 | æ | ĸ | % | 8 | ជ | | | | | | | | | 19 | Comp | | | | | 3 | | 29 | | 5 | | | | | | | | | 8 | 708 00 | | | | | | | 41 | | ** | | 70 | | 11 | | | | | 14 | Petty. | | | | | | | æ | 2 | | | * | 2 | 33 | 2 | | | | | = | | | | | | | | 39 | Я | | ដ | 8 | | | | | | 717 | 42.04 | | | | | | | | | 8 | | | 11 | | 'n, | 77 | | | 2 | 3 | | | | | | | | | * | | 72 | | 119 | | | | | | 4 | | | | | 16 | 8. | 3 | * | | | | | | | | | | | 10 1 | | | | | 103 | * | 2 | \$ | | | | | | | | | | | 1971 | | | | | | 9 | | | | | | | | | | | | \$ | 1000 | | | | | 121 | 8 | 2 | 8 | 3; | | | | | | | | | | K,000, | | | | | | | #1 | R | 3 | * | | | | | | | | \$ | • | | | | | | .8 | 611 | 70 | 16 | 230 | 750 | | | |-----|-------------------|--|---| | | 210 | | • | | | 3 | | | | 000 | ? | | 1 | | 9 | 24 | | | | | 410 | | ; | | | 3 | | | | ļ | 6 | | | | | 3 | | | | | 6 30 | | | | | 450 | | | | | 410 | | | | | \$ | | | | | 390 | | | | : | † | | | | | ပ | | | | • | Tamp | | | | | Catalyst Temp. OG | | | | | | | | | * | | | | | | 5 6 | | | | | | | | | | | | |----|---|-----|-----|---|----|------------|----|----|-----|----|---|----|-----|---|----|-----|---| | | | | | | | 33 | | | | | | | | | | | | | 19 | | | | | | 37 | | | | | | | | | | | | | | | | | * | 8 | 44 | 3 | 8 | * | RX | 2 | | | | | | • | | æ | * | ‡ | | * | \$ | E | | 8 | + | | Z | ĸ | 3 | 2 | 3 | ₽. | | | | 3 | 8 | | 2 | 2 | 22 | ĸ | 2 | 3 | | 8 | 3 | 3 | 3 | * | 113 | | | % | ĸ | 103 | | | 8 | 8 | | | 101 | | | ĸ | 2 | | \$ | | | | | | | 2 | | 2 | KK | ** | | 771 | | | \$ | 130 | | | ** | | | 19 | | | 2 | | | | | 13 | | | | | | | | | | | | | | 777 | | | | 8 | | | | | | | | | | | | | | | * | # (P, 1000) T 27872 • | Semple
No. | Catalyst | mple Catalyst Temp. *C> | 390 400 410 420 430 440 450 460 410 480 | 8 | 410 | 9 | 430 | 3 | 6 % | 3 | 410 | 9 | \$ | 500 510 | | 250 | 530 | |---------------|-------------------|-------------------------|---|---|-----|---|-----|---|------------|---|-----|----|----------|----------|---|-----|-----| | | | | | | | | | | | | | , | | | | | | | 710 | 4 | | | | | | | | | 8 | | 31 | भ्र | X | 3 | Ø | \$ | | 19 | GeCO ₃ | | | | | | | | | | 8 | | 2 | ğ | | | | | 8 | 14283 | | | | | | | | | 8 | | | 3 | 200 | E | *** | | | 8 | uz | | | | | | | | | | 8 | | 283 | Table 3 shows the effect of some of the above and of other added substances at a higher temperature. Again, V_2O_5 , LiC1 and $Fe_2(SO_4)_3$ and also Al powder strongly catalyze. The oxides MgO and Cr_2O_3 strongly inhibited the reaction. K_2CO_3 inhibited the reaction to about one-half the rate for the $KClO_4$ -pDVB reaction. Table 4 shows the effect of two of the catalysts in the same ratio to KClO₄ as above but with the KClO₄ and pDVB in equal proportions by weight. There is about the same degree of catalysis but with high proportions of pDVB the tablets were mechanically less stable and reproducibility was poor. Table 5 represents the main body of work done in this section, wherein a ratio of 5 parts $KClO_4$ per part of pDVB by weight and a ratio of 0.028 parts catalyst per part $KClO_4$ by weight and a temperature of $350^{\circ}C$ were used throughout. The catalysts mentioned above were used again and others chosen to illustrate certain trends previously observed. It is evident that more than one factor is involved in the catalytic mechanism (see section E). It can be seen that catalysis is strong with substances likely to be proton donors, e.g. strongly ionic compounds or acid compounds (Lewis acids) such as $\text{Al}_2(\text{SO}_4)_3$, $\text{Fe}_2(\text{SO}_4)_3$, LiCl, NH₄Cl, etc., whereas inhibition occurs with proton acceptors, e.g. basic compounds, such as K₂CO₃, Na₂CO₃, LiOH, Li₂CO₃. For example, the rate constant with the latter two substances was one-thirtieth of the uncatalysed rate. Metals did not show any appreciable activity as catalysts while they are renowned for their effect in gas phase reactions at high temperatures. In the present reactions they behaved more or less as inert substances, at times even inhibiting the reaction. Of the oxides, only vanadium pentoxide showed any catalytic activity. All others used showed a mild to strong inhibition. Apart from Lewis acids actual protonic acids, for example, molybdic acid, dicyclohexyiamine hydrochloride and phosphoric acid, were used also and were found to catalyze the reaction between KClO₄ and pDVB. Phosphoric acid at a concentration of 0.01 ml per pellet of 250 mg at 350° C only slightly catalyzed the reaction but at 400° C and with 0.05 ml H_3 PO₄ per pellet the reaction proceeded explosively. Experiments with boric acid at 400° gave only mild catalysis in some cases, while in others explosion occurred. It is evident that the temperature sensitivity of these reactions was very large and the differing behaviour must be due to slight fluctuations of the furnace temperature. An anion and a cation exchange resin (Amberlite IR 410, quaternary amine type and Amberlite IR 120, sulfonic acid type, respectively) were used as catalysts under the same conditions. The cation exchanger catalyzed the reaction to six times the uncatalyzed rate and the anion exchanger to about three times the uncatalyzed rate. This was the only instance of a basic substance having a catalytic effect. In view of the complicated structure of such a resin we cannot put forward an explanation. (c) The Empirical Rate Law of the KClO₄-pDVB Reaction and of the Catalyzed KClO₄-pDVB Reaction. It is logical to assume that in the solid-solid reaction between $KClO_4$ and pDVB the main rate-determining factor will be the behaviour of the $KClO_4$ particle since pDVB is a rigid, crosslinked, non-ionic solid having very slight or no mobility. Furthermore, experiments were carried out at temperatures far below the melting point of the polymer and considerably above the Tammann temperature of $KClO_4$. The only other factor involved in the KClO₄-pDVB reaction would be the influence of the products of the reaction on the ensuing reaction. TABLE 2 Effects of Catalysts KC10₄:pDVB = 2.5:1 (w/w) • 350°C Catalyst:KC10₄ = 0.028:1 (w/w) | Run No. | Catalyst | <u>k (hr⁻¹)</u> (Bq.V, p.27) | |---------|---|---| | 3 | V ₂ 0 ₅ (0.14:1) | 0.868 | | M-5 | IIC1 | 0.734 | | 47 | Fe ₂ (80 ₄) ₃ | 0.656 | | F, G | V ₂ 0 ₅ | 0.575, 0.448 | | 31 | None | 0.063 | | 2 | F•2 ⁰ 3 | 0.063 | | 30 | ^{Cr} 2 ^O 3 | 0.031 | | Y | MinO ^S | 0.003 | TABLE 3 Effects of Catalysts EC10₄:pDVB = 2.5:1 (w/w) @ 400°C | un No. | Catal
(\$ in mix | yst
ture) | k (hr ⁻¹) | |--------|--------------------------------------|--------------|-----------------------| | C | v ₂ 0 ₅ | 10% | samples exploded | | H | LiC1 | 2% | 2.8 | | R | Fe2(804)3 | 0.2% | 0.96 | | L | Λ1 | 24 | 0.74 | | P | Al | 0.5% | 0.56 | | K | Youe | | 0.46 | | D | K2003 | 10% | 0.336 | | I | K 2003 | 2% | 0.232 | | A | cr ₂ 0 ₃ | 10\$ | 0.132 | | В | MgO | 10% | 0.008 | | | | | | ## TABLE 4 # Effects of Catalysts KC10₄:pDVB = 1:1 (w/w) @ 350°C catalyst:KC10₄ = 0.028:1 (w/w) | Run No. | Catalyst | <u>k (hr⁻¹)</u> | |---------|---|----------------------------| | V,W,45 | Fe ₂ (SO ₄) ₃ | 0.985 | | U,46 | v ₂ 0 ₅ | 0.24, 0.179 | | 1 | Hone | 0.077 | # TABLE 5 # Effects of Catalysts KClO₄:pDVB = 5:1 (w/w) @ 350°C catalyst:KClO₄ = 0.028:1 (w/w) | Run Ho. | Catalyst | k (hr ⁻¹) | |----------|---|-----------------------| | 187 | Amberlite 🖿 120 | 0.412 | | 77 | Ferric Ammonium Sulfate | 0.39 | | 32,42 | Fe ₂ (80 ₄) ₃ | 0.35, 0.35 | | 58,83,84 | IACI | 0.27 (ave.) | |
81,71,97 | A1 ₂ (SO ₄) ₃ | 0.079, 0.262, 0,250 | | 188 | IR 410 | 0.219 | | 38,33 | v ₂ 0 ₅ | 0.179, 0.080 | | 94,95 | FeC1 ₂ | 0.152 | | 185 | H ₂ Mo ⁰ 3 | 0.139 | | 125 | Dicyclohexylamine
hydroehloride | 0.122 | | 66 | K2804 | 0.10 | | 75 | 162 4°H ₂ 0 | 0.098 | | 104 | WH4C1 | 0.091 | | 76 | PbCl ₂ | 0.088 | | 64 | caso ₄ | 0.084 | TABLE 5 (cont'd) | Run No. | Catalyst | k (hr ⁻¹) | |-----------|--|----------------------------| | 65 | Na ₂ 804 | 0.084 | | 80,98 | CuCl ₂ | 0.091, 0.067 | | 87 | NH _A Br | 0.079 | | 92 | hiso4.6H50 | 0.079 | | 52,108 | 70 | 0.070, 0.051 | | 184 | H ₃ PO ₄ (0.01ml/pellet) | 0.065 | | 39,40 | Jone | 0.060, 0.056 | | 544,548 | Br | 0.057, 0.053 | | 55A,55B | KI | 0.057. 0.053 | | 57A,57B | KC1 | 0.057, 0.053 | | 85,101 | MnC1 ₂ | 0.057, 0.054 | | 72 | BaSO ₄ | 0.05 6 | | 88,96 | CoSO4 | 0.054 , 0.052 | | 82,99,100 | MaCl | 0.047 , 0.029, 0.07 | | 34,110 | Al | 0.042, 0.035 | | 107 | Wi-Al alley | 0.040 | | 123 | KH phthalate | 0.040 | | 63 | BaCl ₂ | 0.038 | | 56 | I4 1804 | 0.037 | | 70 | Habr | 0.035 | | 67 | CaCO3 | 0.034 | | 79 | CuCl | 0.031 | | 61 | 16 804 | 0.029 | | 105 | A62 ^{SO} 4 | 0.025 | | 102 | caco ₃ | P10.0 | | 124 | KIO3 | 310.0 | | 126 | квго3 | 0.018 | | 103 | Sb205 | 0.017 | | 53 | Cu | 0.017 | | 73 | Fai | 0.011 | TABLE 5 (cont'd) | Run No. | Catalyst | k (hr ⁻¹) | |---------|---|-----------------------| | 89 | Pb80 ₄ | 0.009 | | 68 | K ₂ CO ₃ | 0.008 | | 62 | Ba(NO3)2 | 0.007 | | 112 | K ₂ Cr ₂ O ₇ | 0.006 | | 106 | Wa4P207 | 0.006 | | 43 | karo3 | 0.004 | | 44 | K ₂ CrO ₄ | 0.004 | | 50 | Zn | 0.004 | | 51 | ¥g | 0.004 | | 178,69 | Wa ₂ CO ₃ | 0.004, 0.002 | | 179 | NeHCO3 | 0.004 | | 93 | ZnSO ₄ | 0.004 | | 78 | Pb304 | 0.002 | | 86 | TT OH | 0.002 | | 90 | ra ⁵ co ³ | 0.002 | | 91 | ^{Sb} 2 ⁰ 3 | 0.002 | # PIGURE 1 Typical Kinetic Curves for EC10₄ - pDVB - catalyst mixtures @ 350°C EC10₄:pDVB = 5:1 (w/w) catalyst:EC10₄ = 0.028:1 (w/w) | Run Ho. | Symbol . | Catalyst | |---------|----------|---| | 39 | Ø | Bono | | 139 | 0 | None | | 102 | 8 | CaCO ₃ | | 112 | ⊕ | K ₂ Cr ₂ O ₇ | | 81 | • | A1 ₂ (80 ₄) ₃ | | 71 | • | A1 ₂ (80 ₄) ₃ | | 97 | • | A1 ₂ (80 ₄) ₃ | | 54B | | I3: | | 34 | Φ | A1 | | 86 | • | 1400 | | 38 | 0 | v ₂ 0 ₅ | | 94 | • | PeCl ₂ | | 42 | ⊖ | Pe ₂ (80 ₄) ₃ | Since the solid products of the reaction are KCl and an oxidized polymer (plus water and carbon dioxide) the influence would be one of inhibition, mostly due to the KCl, acting as a barrier to further reaction. If the catalysts are in small amounts the above considerations will hold true in the catalyzed reaction since the effect of the catalysts should be only to enhance the mobility of the oxidant and the inhibitory influence of the products should remain proportionally the same. The general form of the rate equation should be of the type $dx/dt = k(a-x)^m/x^n$ where $m \le 1$ and $n \le 1$. The term x^n makes allowance for the inhibition of the diffusion of the product. By testing various equations of this type (see Tables 6, 7 pages 27, 28) it was found that the equation gave the best fit to the curves of both the catalyzed and the uncatalyzed reactions when m=1 and $n=\frac{2}{3}$. The differential equation $$\frac{dx/dt = \underline{k(a-x)}}{\sqrt{2/3}}$$ was used in the form $$K = \frac{x^{5/3}}{a^3} \left(\frac{5}{5} a^2 + \frac{3}{8} ax + \frac{3}{11} x^2 + \dots \right) /t$$ obtained by integrating the geometrical series expansion of the differential equation (see Experimental Part). ### TABLE 6 Empirical Equation $$kdt = x^{1/3} / (a - x)^{2/3} dx$$ or $$kt - x^{4/3} (3/4 a^2 + 2/7 ax + 1/6 x^2 + ...) / a^{6/3}$$ III $$kdt = [1 / (a - x)] dx$$ or $$kt = 2.303 \log[a / (a - x)]$$ III $$kdt = [x^{1/5} / (a - x)] dx$$ or $$kt = x^{6/5} (5/6 a^2 + 5/11 ax + 5/16 x^2 + ...) / a^3$$ IV $$kdt = [x^{1/3} / (a - x)] dx$$ or $$kt = x^{4/3} (3/4 a^2 + 3/7 ax + 3/10 x^2 + ...) / a^3$$ V $$kdt = [x^{2/3} / (a - x)] dx$$ or $$kt = x^{5/3} (3/5 a^2 + 3/8 ax + 3/11 x^2 + ...) / a^3$$ VI $$kdt = [x^{3/4} / (a - x)] dx$$ or $$kt = x^{7/4} (4/7 a^2 + 4/11 ax + 4/15 x^2 + ...) / a^3$$ VII $$kdt = [x^{9/10} / (a - x)] dx$$ or $$kt = x^{19/10} (10/19 a^2 + 10/29 ax + 10/39 x^2 + ...) / a^3$$ VIII $$kdt = [x / (a - x)] dx$$ or $$kt = x \ln[a / (a - x)] - x$$ $$kdt = [x / (a - x)] dx$$ or $$kt = x \ln[a / (a - x)] - x$$ $$kdt = [x^{1/3} / (a - x)] dx$$ or $$kt = x^{1/3} (3/7 a^2 + 3/10 ax + 3/13 x^2 + ...) / a^3$$ TAKE I Dit of Kinglis data to destitues of Dade 6 (for russ B.B.45) | 3 | 1:0 | 1.0 | 1.03 | 36.7 | 1.03 | 1.0 | 0.995 | 0.935 | 0.750 | 0.59 | м | | |---------------|-------|---------------|----------|----------|-------|-------|-------|-------|---------------|--------|-----|---| | 9.40 | 7.0 | 5.65 | 5 | 3-10 | 2.8 | 2.13 | 1.49 | 1.005 | 0.598 | 0.297 | # | - | | | | | | | | | | | | | | | | 0.372 | 0.X | 0. X 1 | 0.35 | 0.379 | 0.400 | 0.466 | 0.422 | 0.415 | 0.377 | 0.342 | | | | 7 | 2-2 | 1.91 | 9 | 1.325 | 1.10 | 0.836 | ** | 0.456 | 10.301 | 410 | Ħ | ħ | | | | | | | | | | | | | ı | | | 0.196 | 0.209 | 0.222 | 0.236 | 0.255 | 0.269 | 0.286 | 0.306 | 0.311 | 0.292 | 0.280 | .44 | | | 9 | • | 1951 | 8.1 | 0.091 | 0.740 | 0.590 | 0.460 | 0.342 | 0.234 | 0.140 | 1 | H | | | | | | | | | | | | | | | | 0.109 | 91170 | 0.124 | 0.133 | 0.146 | 0-156 | 0.175 | 0.192 | 0.202 | 0.203 | 0.213 | M | | | } | | | 200 | 0.0
1 | | 0.35 | 0.20 | 0.223 | 0.1625 | 0.1060 | ı | H | | 1 | • | • | • | | | | | | | | | | | 1.28 | 1.30 | 1743 | 1.S | 1.61 | 1,68 | 1.19 | 1.95 | 1.8 | 1.1 | 1.56 | | | | 20.1 0 | 9-30 | 8.00 | 6.78 | 2.65 | 7.62 | 3-69 | 2-82 | 2.03 | 1.37 | 0.780 | 1 | н | | | | | | | | | | | | | | 4 | | 8.40 | 9.90 | 2.60 | 4.50 | 3.50 | 2.15 | 2.0% | 1.50 | 1.10 | 900 | 9 | | • | | 3 | 8 | 8 | \$ | \$ | × | 2 | x | 20 | x | 93 | × | | | | | | | | | | | | | | | | TAKE 1 (cont.d) | | × | 01 | 23 | 50 | 22 | Զ | × | \$ | \$ | 8 | . . | 3 | |-------|--------------------|-------|-------|-------------|------------|---------------|------|----------|-------|-------------|------------|-------| | Fres. | Equ't t(hrs.) 0.50 | 0.50 | 0.00 | 1.10 | 1.50 | 2.05 | 2.15 | 3.50 | 4.50 | 2.60 | 9.90 | 8.40 | | | | | | | | | | | | | | | | 11 | ı | 0.322 | 0.124 | 1.24 | 1.90 | 2.12 | 3.68 | . | 6.18 | 1.11 | 9.45 | 11.50 | | | M | 0.64 | 0.90% | 1.13 | 1.26 | 1.33 | 1.34 | 1.39 | 1.37 | 1.37 | 1.37 | 1.37 | | VII | ı | 0.446 | 1.000 | 1.735 | 2.840 | 4.25 | 5.82 | 1.80 | 10.15 | 12.90 | 16.10 | 19.70 | | | м | 0.892 | 1.25 | 1.63 | 1.89 | 2.01 | 2.12 | 2.23 | 2.25 | 2. X | 2.33 | 2.34 | | VIII | ı | 09.0 | 1.25 | 2. 8 | 3.87 | 5. 8 0 | 9.0 | 11.0 | 14.8 | 19-5 | 3 | 31.5 | | | M | 1.20 | 1.56 | 5.09 | 2.58 | 2.83 | 2.91 | 3.14 | 3.29 | 3-48 | 3.61 | 3.75 | | Ħ | # | 0.975 | 2.67 | 5.4 | 9.49 | 15.2 | 22.5 | 72.1 | 4.1 | 58.5 | 16.5 | 7.5 | | | | 1.990 | 3.3t | * | %.9 | 7.40 | 8.19 | 9.17 | 9.80 | 10.4 | าา | 9.11 | The kinetic data for uncatalyzed reactions between pDVB and KClO₄ was fitted to equations V and VI. As for the catalyzed reactions, the empirical equation V gave a better fit for all the runs (Table 8, page 30). #### (d) Effect of Catalyst Concentration There appears to be a limiting catalyst concentration (Tables 9A, 9B, pages 31,32 and Figure 2, page 34) above which the rate of reaction is not increased further. It is quite probable that at even higher catalyst concentrations the added substance would act as a barrier to the diffusing particles. We believe that at higher catalyst concentrations additional complicating effects may become operative, such as reaction between the 'catalyst' and KClO₄ and/or pDVB. Some of the catalysts are oxidizing agents (Fe⁺⁺⁺ salte, V₂O₅, etc.), others are reducing agents (metals) and accordingly in the presence of large concentrations of these substances the whole picture of the reaction may change. ### (e) Blank Determinations ۸, Experiments carried out on KClO₄-catalyst mixtures (without pDVB) under the usual experimental conditions (Table 10, page 36) showed that certain catalysts caused a decomposition of KClO₄. These catalysts were used at lower temperatures Comparison of Fit of Uncatalysed Reactions to Equations V. VI | | | Run I | No. 31 | Run No. 40 | | Run N | io. X | Rum No. 39 | | | |----------------------------|--|--------------------------------------|--|------------|----------------|----------------------------|-------------------------|------------------|-----------------------------|--| | X_ | ky* | t(hrs) | k(hr ⁻¹) | ŧ | k | • | k | <u> </u> | k | | | 10 | 0.297 | 5.0 | 0.059 | 5.40 | 0.055 | 4.0 | 0.074 | 5.3 | 0.056 | | | 15 | 0.598 | 10.0 | 0.060 | 10.50 | 0.057 | 7.50 | 0.080 | 9.25 | 0.065 | | | 20 | 1.005 | 16.0 | 0.063 | | | 12.25 | 0.082 | 16.7 | 0.060 | | | 25 | 1.49 | 24.0 | 0.062 | | | 20.30 | 0.073 | | | | | 30 | 2.13 | 32.0 | 0.067 | | | | | | | | | 35 | 2.84 | 44.0 | 0.065 | | | | | | | | | 40 | 3.70 | | | | | | | | | | | | | 470 = | 0.063 | | 0.056 | 870 = | 0.077 | 870 | = 0.0 6 | | | | | | 0.063
 | Run M | | Run I | | | io. 39 | | | х | kėl į | Run ' | | | | | | | | | | X
10 | 0,322 | Run ' | ‰. 31 | Run II | io. 4 0 | Run I | io. X | Run I | io. 39 | | | ~ | | Run 't(hre) | % 31 k(br ⁻¹) | Run H | io. 40 | Run I | io. X
k | Run I | io. 39 | | | 10 | 0.322 | Run 't(hrs) | % 31
k(bx ⁻¹)
0.064 | Run N | io. 40
k | Run I | io. X
k | Run 1 | io. 39
k | | | 10
15 | 0.322 | Run 't(hre) 5.0 | % 31
k(bx ⁻¹)
0.064
0.072 | Run N | io. 40
k | Run II
t
4.0
7.50 | 0.080
0.096
0.101 | Fun 1 t 5.3 9 25 | % 39
k
0.061
0.078 | | |
10
15
20 | 0.322
0.724
1.24 | Fun 't(hre) 5.0 10.0 16.0 | % 31
k(bx ⁻¹)
0.064
0.072
0.077 | Run N | io. 40
k | Run II 4.0 7.50 12.25 | 0.080
0.096
0.101 | Fun 1 t 5.3 9 25 | % 39
k
0.061
0.078 | | | 10
15
20
25 | 0.322
0.724
1.24
1.90 | Fun 't(hre) 5.0 10.0 16.0 24.0 | 0.064
0.072
0.079 | Run N | io. 40
k | Run II 4.0 7.50 12.25 | 0.080
0.096
0.101 | Fun 1 t 5.3 9 25 | % 39
k
0.061
0.078 | | | 10
15
20
25
30 | 0.322
0.724
1.24
1.90
2.72 | Fun 't(hre)' 5.0 10.0 16.0 24.0 32.0 | 60.31
k(bx ⁻¹)
0.064
0.072
0.077
0.079
0.085 | Run N | io. 40
k | Run II 4.0 7.50 12.25 | 0.080
0.096
0.101 | Fun 1 t 5.3 9 25 | % 39
k
0.061
0.078 | | The ratios of KORO, to phys for Some 31, 39, 40 and X are 2.5:1, 5:1, 5:1, and 1:1, respectively TABLE 9 A Effect of Catalyst Communication on Rate of Reaction KC104:pDVB # 5:1 (w/w) • 350°C | Run No. | \$V205 in Mixture | ğ (hr ⁻¹) | |---------|-------------------|-----------------------| | 139 | 0 | 0.041 | | 133 | 0.1 | 0.084 | | 134 | 0.2 | 0.112 | | 135 | 0.4 | 0.120 | | 136 | 1.0 | 0.120 | | 137 | 2.0 | 0.120 | | 138 | 4.0 | 0.120 | TABLE 9 B Effect of Catalyst Concentration on the Reaction between KC104 and pDVB | Run No. | Catalyst | KC10 ₄ : pDVB | Catalyst
spDVB | Temp. | k (hr ⁻¹) | |---------|-------------------|--------------------------|-------------------|-------|-----------------------| | 3 | ₹2 ⁰ 5 | 2.5:1 | 0.14:1 | 350° | 0.87 | | • | * | . | 0.028:1 | • | 0.58 | | 31 | Hone | | 0 | | 0.063 | | L | Al powder | 5:1 | 0.028:1 | 400° | 0.74 | | P | • | • | 0.007:1 | • | 0.56 | | ĸ | Tone | • | 0 | • | 0.46 | | 59 | Fe pewder | 5:1 | 0.112:1 | 350° | 0.065 | | 52 | • | H | 0.028:1 | • | 0.070 | | 60 | • | | 0.007:1 | • | 0.081 | | 39 | Ione | • | 0 | • | 0.060 | ## FIGURE 2 The Effect of Catalyst Concentration on the Reaction between EC104 and pDVB $k (hr^{-1})$ we \$ Catalyst (V_2O_5) EC104: pDVB = 5:1 (w/w) Temp. = 350°C for the oxidation reactions with pDVB but the possibility cannot be ruled out that the alteration of conditions in the course of the reaction might enable these catalysts to resume their effect. The table shows that only LiCl had a significant decomposition effect in closed tubes and this occurred at 400° C. Vanadium pentoxide at 400° , but in a reaction chamber open to the atmosphere had a large decomposition effect. In closed tubes at 400° the decomposition of KClO₄ with V_2O_5 was insignificant over 24 hours. All other substances tested under the same conditions showed little or no decomposition of KClO₄. Runs made to determine the decomposition of the polymer showed that it commenced only at 400°C over extended periods of heating in the presence of air. The weight loss of the polymer indicated a thermal decomposition of up to 30% over 24 hours at this temperature. As nearly all runs with oxidants were performed at a much lower temperature and in sealed ampoules the thermal decomposition of the polymer can be neglected. The amount of reaction of KClO₄ with KCl formed, at the temperatures used, is negligible. The eutectic temperatures given in the literature (Schroder⁽⁵³⁾) for mixtures of KClO₄ and KCl are much higher than the reaction temperatures used. TABLE 10 Blank Determinations KC104 - added substance (without substrate) | | Added
Substance | Conc. of
Added
Substance | Reaction
Temp ₆ (8c) | Reaction
Time
(hrs) | % Decomp.
of
KCJO ₄ | |-----------|---|--------------------------------|------------------------------------|---------------------------|--------------------------------------| | 161 | ne [†] cj | 2% | 250 | 24 | 0 | | | # | (by wt.) | 300 | | 0 | | | ** | • | 400 | Ħ | 5•7 | | 175 | H ₃ PO ₄ | 0.005 m1/
0.15-0.25g | 400,350,300 | 5 | o | | | | KC104 | 400,350,300 | 16 | 0 | | H-A | Fe ₂ (80 ₄) ₃ | 2% | 40 0 | 24 | 0, 2,2 | | | 2. 4.3 | · | 350 | 23 | 0, 0 | | 26 | Al | 2% | 400 | 72 | 4.7, 2.1 | | | 10 | • | • | 24 | 0.4, 1.2 | | 27 A | Lici | 24 | 400 | 10 | 35.6 | | | • | ** | • | 24 | 43.5,40.3 | | 27 B | v ₂ 0 ₅ | 2% | 400 | 24 | 2.2, 1.6 | | 25 | v 205 | 2% | 400 | 66 | 12.3 | | 24 oper | ₂ 0 ₅ | 2% | 400 | 16 | 18.5 | | 22 A tube | 7 205 | 18 | Ħ | • | 15.3 | | 23 | v 205 | 2% | 400 | 16 | 1 - 4 | | | - | 9.7 | • | • | 1.3%, 1.8 | | 22 B | K2003 | 25 | 400 | 16 | 0.1 | | | _ , | | 350 | 44 | 1.3 | | 23 6 | FeC1 ₂ | 24 | 350 | 8 | O | #### (f) Reproducibility and Experimental Error Reproducibility of results for reactions between KClO_4 and pDVB together with added substances depends on the following physical factors: - (1) Uniformity of grain size (i.e. surface area). - (2) Uniformity of mixing and pressing of pellets. - (3) Temperature control. - (4) Aging of tablets. It is to be expected that strict control of all these conditions is practically impossible and that in solid-solid reactions reproducibility of results will be relatively poor. Table 5, page 22 includes duplicates of some experiments and shows that the variation between the values of k may in some cases be considerable. Figure 1, page 16, shows that in any one run the points gave a fairly smooth curve with only one or two points wildly off the curve. Thus, for a set of conditions as set for a particular run the reproducibility is good. In most cases, especially if the reaction was fast, two or more runs were made under duplicated conditions and the reaction curves were drawn so as to give the best fit to all experimental points. ## IIB The Catalysis of the pDVB-KClO, Reaction #### Ante Ignition Temperatures An examination of the ignition times at corresponding temperatures (Table 11, page 39) reveals that the mixtures containing a strong catalyst ignited much more quickly than those containing a weak catalyst or inhibitor. The only exception to this rule was LiCl which, although it seted as a medium strong catalyst, (see part II-B-(b)) was in the ignition test not conducive to a rapid ignition. Most of the ignitions were preceded by a gentle burning which in a few seconds developed into a rapid burning accompanied by smoke and flame. There was an exception in the samples containing CoSO₄ which did not ignite in this manner but with a sudden explosion. Moreover, it had one of the lowest of ignition temperatures, slightly lower than for mixtures containing stronger catalysts such as MnSO₄, MnCl₂ and NH₄Cl. Some mixtures containing inhibitors did not ignite but fused and probably decomposed in the melt. (b) The effects of various added substances on the KClO₃-pDVB reaction are shown in Tables 12, 13, pages 42 & 43 and Figure 3, page45. As in the catalyzed KClO₄-pDVB reaction there are ARE 11 Ignition Times (seconds) (KClO₃ + pDVB + extalysts) 330 340 320 325 ig . | • | | | | | | 23 | | | | | | | | | | |---|----------|------|----------|----------|-------------|------|------------------|------------------|--------------|-----------|-----------|--------------|--------|----------|-------| | | 73 | 50 | 22 | 23 | 22 | 29 | 33 6 | 21 | æ | 58 | 8 | \$ \$ | 23 | # | 34 | | | \$ | | | | | | | | × | | | | | | | | | 27 | 56 | 39 | | 33 | 25 | ‡ | | | | | 8 | | | ಇ | 56 | 2 | 4 | 25 | Զ | 8 | <mark>ፈ</mark> ደ | * | X | 61 | 55 | × | 2 | 4 | * | | | Ħ | \$ | 4 | | 8 | \$ | 200 | | 23 | 3 | | がた | | | 8 | | | 4 | 63 | 23 | * | × | 20 | | * | 63 | | 18 | | \$ | ደ | 88 | | | 20 | | 75 | | 55 | 44 | | | 12 | | | | | | 701 | | | | | | | | | | | | | 100 | | | | | | | | | | 8 | | | 8 | 98 | 2 | 22 | | | 16 | 8 | | | | | | | 3 | • | 3 | ~m | ~ " | ~
~ | _m | · _ ~ | | | 8 | e de | 202 | 9 | 13 4 | H,CJ | -14 THE | uG1 ₂ | riga
Tiga | 12 (80 | 708)21 | 12 (80 | 2 (80 | 2 (80 | 30, | | | o | # | # | ű | | | | | | | | | | | | | | 53 | 13 | ፠ | 55 | • | 86 | 40,19 | 8 | 8 | \$ | • | 53 | * | m | ጸ | • | a | |----------| | į | | ٤ | | π | | - | | 7 | · . | | 3 . į | | | | | | | | | | | | | | . 5 | | | |--------------------|------------------------|-----|------|-----|----------|------|------------|-----|----------|-----|----|-------------|----------|-------------|-------|-----------|-----| | | 82 | 2 | * | ዴ | 33 | 3 | × | | × | 34 | * | \$ | æ | | | 2 | 155 | | | ğ | | | | | | | | | | | | | Ng
Ng | | | | | | 8g | | | ×× | | 23 | 3 | \$ | × | 22 | \$ | | * | | | | | | | ब्र | | | | | | | | | | | | | | 240 | | | | 2 | a | 3 | * | *3 | X | × | \$ | * | ; | % | æ | 53 | 8 | | | | | | Ĭ | g, | | | 82 | | 3 | | 8 | 25 | 19 | 33 | | \$ | | | | | | (P. \$100) TT ##WI | 290 | 3 | 3 | | 3 | 19 | \$ | | 2 | % | 8 | | x | | | | | | 2 × 1 | 280 | | | | | | | | 12 | | \$ | | 8 | | | | | | • | 275 | | 37 | | | | | | | | | | | | | | | | | 270 | * | | | 8 | | × | 114 | | | | 240Ü | | | | | | | | 260 | | | | | | | | | | | | | | | | | | | Temp. °C -> | | | | | | | | | | | | | | | | | | | Sample Catalyst
Mo. | 4,9 |) o' | 750 | E,00.9 | 2029 | 100 | 0 | 08 | CaG | 5 | 1081 | of H | 14 0 | Zado, | 10 | Ħ | | · | Sept. | ~ | * | Ħ | æ | * | \F | 2 | 2 | ಇ | 2 | 8 | ສ | 8,36 | 2 | * | ZI, | | | 340 | 54 | 1604 | = | ı | = . | = | = | 5 | 5 | | = | 5 | ۵, | | |----------|-------------------|-----------|--------------|----------|-------|------------|-----|------|------------------|------------------|------------|--------------|----------|-----|------------| | | 8 | 2.40k | | 1804 | 240 K | 240 | 240 | 240K | 240 ^U | 240 ^U | | 240 <u>u</u> | 190g | 8 | 113 | | | ğ | | | | | | | | | | _ | | | | | | | å | | | | | | | | | | 240k | | | | | | | ä
 | | | | | | | | | | | | | | | 3 | a | | | | | | | | | | | | | | | | (00mt'd) | ã | | | | | | | | | | | | | | | |) A | 20 | | | | | | | | | | | | | | | | 2442 | 8 | | | | | | | | | | | | | | | | | 275 | | | | | | | | | | | | | | | | | 270 | | | | | | | | | | | | | | | | | 35 | | | | | | | | | | | | | | | | | † °° ¢ | | | | | | | | | | a | | | | r | | | Semple Gatalyst T | 94 | ogen
Ogen | 1901 | 3, | e e | 8,4 | ฐ | 707 | a
O | 7HL. 7083M | 4 | 8, | . 4 | Me ostaly: | | | e de | 2 | 32 | × | × | 23 | × | × | 91 | 11 | 4 | 7 | * | 11 | | atita atita bita and strongly basic substances strongly inhibit. There is a finer gradation between these experiments as compared with the KClO₄ reactions as the gap between the amount of reaction for a highly activated reaction and an uncatalyzed reaction is much larger. Here we see that some metals catalyze the reaction (e.g. aluminum) to an appreciable extent and others not at all. The highest degree of catalysis was obtained with ammonium bromide, the rate of reaction at 225° being 230 times that of the uncatalyzed reaction at 250°. A similar rate was obtained for ammonium chloride and about 1/3 of this rate for aluminum sulfate, manganese sulfate, ferric sulfate and cobalt sulfate. At 225° vanadium pentoxide catalyzed the rate to five times the uncatalyzed rate at 250°. At 225° the uncatalyzed reaction between KClO₃ and pDVB did not proceed. In general, salts of the heavy metals were strong catalysts for the KClO₃-pDVB reactions much as they were for the KClO₄ pDVB reaction and salts of the alkale metals were either weak catalysts or inactive. It can be stated that the qualitative effect of catalysts and inhibitors was the same with IsClO₄ and IsClO₄, but the quantitative relations differed widely. Experiments were run under identical conditions for examination of the products from the standpoint of a vgcn incorporated TABLE 12 ## Effect of Catalysts • 225°C E0103:3073 x 5:1 (v/v) Oatalyst:EC103 = 0.028:1 (w/w) | 39
42,47 | nego ₄ | 13.3
4.5, 4.5 | | | |-------------|---|----------------------------|--|--| | 45A,45B | Po2(804)3 | 3.03, 3.03 | | | | 29 | 00504 | 2,06 | | | | 444,449 | Al ₂ (80 ₄) ₃ | 1.92, 1.92 | | | | 51,52 | v ₂ 0 ₅ | 0.33, 0.33
(Initial Bat | | | | | Bene | 0.00 | | | ## TABLE 13 ## Effect of Catalysts • 250°C EC103:DDVB = 5:1 (w/w) Catalyst:EC103 = 0.026:1 (w/w) | In Io. | Catalret | _b_(be ⁻²) | |-------------|---|------------------------| | 13 | MaC1 ₂ | 85.0 | | 21 | 1680 ₄ | 28.6 | | 5 | CeSO | 20.0 | | 4,26 | A1 ₂ (80 ₄) ₃ | 11.1, 10.0 | | 27,53,54,46 | V ₂ 0 ₅ | 10 (initial rate) | | 30,3 | Feg(80 ₄) ₃ | 10, 9.1 | | 50,33 | CuC1 ₂ | 5.0, 3.70 | # **PARLE 13** (cont'd) | Run Ho. | Catalret | k. (hr-1) | |------------|---------------------------------|-----------------| | მ, 36 | 1401 | 3.2, 1.92 | | 34,45,6 | 11.30 ₄ | 2.42, 2.42, 1.0 | | 41 | Mg804.7820 | 1.44 | | 12,31 | 0u01 | 1.25, 1.25 | | 18,43 | E202207 | 0.98 | | 37,49 | IA pro | 0.642 | | 20 | ZnSO ₄ | 0.54 | | 16 | Al | 0.30 | | 7 | Pe | 0.20 | | 25 | Na ₂ 80 ₄ | 0.134 | | 15 | EI | 0.134 | | 1 | Jone | 0.066 | | 128,129 | 16 02 | 0.066 | | 35 | BeC12 | 0.066 | | 、32 | PbG1 ₂ | 0.066 | | 11 | Cra | 0.066 | | 26 | CaSO ₄ | 0.066 | | 23 | Pb80 ₄ | 0.066 | | 14 | NaC1 | 0.066 | | 17 | 2n | 0.02 | | 23 | 13 103 | 0.02 | | 10 | Lion | 0.00 | | 24 | Wa ₂ CO ₃ | 0.00 | # PIGURE 3 ## Typical Kinetic Curves for EC103 - pDVB - entalyst mixtures * \$25°C EC103:pDVB = 5:1 (w/w) entalyst:EC103 = 0.026:1 (w/w) | Im le. | Symbol . | Catalyst | |--------|--------------|---| | 45 A | • | Po ₂ (80 ₄) ₃ | | 45 3 | 0 | • | | 29 | • | 00804 | | 44 A | | A1 ₂ (80 ₄) ₃ | | 44 3 | 8 | • | | 38 | lacktriangle | MaG1 ₂ | into the polymer. The amount of change in the elementary composition (see Table 14, page 47) is proportional to the amount of KClO₃ decomposed. It is not equal to the latter since the reaction is not solely an incorporation of oxygen into the polymer molecule, but is accompanied by the formation of carbon dioxide and water. Glasner and Weidenfeld⁽¹⁸⁾ found that in the thermal decomposition of KClO₃ and KClO₃-KCl mixtures two consecutive reactions took place: $$KC1O_3 \longrightarrow KC1 + 3O$$ and $KC1 + 4O \longrightarrow KC1O_A$ These reactions took place at temperatures higher than 455° C. The formation of $KClO_4$ in the thermal decomposition of $KClO_3$ is confirmed by A. E. Harvey et al⁽²¹⁾, again occurring only at temperatures in the neighborhood of 500° C. Vanden Bosch and Aten⁽⁶¹⁾ found contrary data with labeled oxygen in chlorate which did not appear in perchlorate. The present reactions between KClO $_3$ and pDVB in the presence of catalysts took place at 250° and lower and proceeded to a complete decomposition to KCl. It is unlikely that KClO $_4$ could be formed for the reason that it would not react at the above temperature. Thus the second of the above reactions does not take place here. The oxygen formed by the first reaction probably moves to the substrate as O_2° or O° where part of it is incorporated into the polymer molecule and part forms CO_2 and H_2O with the substrate. Connection of Oursen Incorporated into pDVS with Onygon Svolved from E0103 | | Sample | \$ Reaction | phis per | otast Az | alysis | A | В | A/B | |---|--------|---------------|----------|----------|------------------|----------|--------|-----| | _ | Во. | (01 analysis) | · 6 | Heis | 10-200) | | | | | | 334 | 0 | 89.34 | 8.53 | 2.13 | | | | | | 337 | 24.3 | 84.79 | 7.51 | 7.70
(5.57) | 0.475 | 0.0590 | 8.1 | | | 336 | 54.4 | 78.01 | 6.37 | 15.62
(13.49) | 1.07 | 0.156 | 6.9 | A z g 0 liberated (from Cl analysis) B z 4 0 incorporat@ into pDW The reaction of KClO₃ with pDVB in the presence of vanadium pentoxide showed the existence of an initiation period for the reaction. At 250°C the reaction proceeds to about 15% after 3.5-5 hours and between the fourth and fifth hour of heating another 60% of reaction takes place. The rate then levels off again. At 225°C the initiation period for this reaction lasts more than 20 hours after which the reaction rate again climbs rapidly. This was the only case investigated wherein sigmoid reaction curves with initiation periods were found. Curves of this type are common in thermal decompositions but we are unable to propose any explanation for its occurrence here in the presence of V_2O_5 while all other added substances showed no initiation period. Also, no such effect of V_2O_5 was found in the KClO₄-pDVB reaction. #### (c) Effect of Catalyst Concentration Table 15, page 49 and Figure 4, page 51 show that the increase in the reaction rate is on the average three-fold for a doubling of the catalyst concentration and does not reach a maximum effect for the catalyst concentration used (up to 2% of the pDVB-KClO₃ mixture by weight). 7A318 15 # Milest of Catalwat Compositration E0103:pDVB = 5:1 Temp. 250°C | Run Jo. | Catalyst:(EC103+pBVB) (Ebs04) | <u>ke (kr⁻¹)</u> | |---------|-------------------------------|-----------------------------| | 156 | 0 | 0.10 | | 151 | 0.05 | 0.37 | | 152 | 0.2 | 1.34 | | 154 | 0.4 | 3.03 | | 156 | 0.8 | 10.5 | | 153 | 1.0 | 11.8 | | 155 | 2.0 | 40.0 | ## PICULL 4 The Effect of Cotalyst Consentration on the Resetten between EC103 and 1978 K₀ (hr⁻¹) we \$ Octolyst (MaSO₄) MS10₃: MSS = 5:1 (m/w) Temp. = 250°C #### (d) Kinctics and Rate Law The reaction of KClO $_3$ with pDVB was found to be of zero order in KClO $_3$, i.e., $\frac{dx}{dt} = k$ CICIO₃ is the only oxidant with which this relationship is valid. KClO₄, KBrO₃ and KIO₃ (see below) all give rates corresponding to Eq. V. This would mean that in the case of KClO₃ the transport of oxygen is very rapid and the reaction rate depends only on the availability of the substrate. In other words, the amount of KClO₃ (5 times the weight of the substrate) is in swamping excess in this case, eliminating the KClO₃ concentration from the equation. ## (e) Blank Determinations Table 16, page 53, shows that the decomposition of KClO₃-NH₄Cl mixtures at 225° was about 7% over 24 hours. This was also the temperature for the NH₄Cl-catalyzed reaction between KClO₃ and pDVB. The amount of side-reaction is thus not negligible even if it is very much smaller than the reaction rate. All other substances showed only slight interaction with KClO₃ at 250°, the maximum temperature used for the KClO₃-pDVB reactions. It can therefore be stated that there were no side reactions between KClO₃ and the added inorganic substances. Blank Determinations E0103 - added substance (without substants) | Im Io. | Addel
Substance | Come. of
Added
Substance | Resetion
Tempe
(°C') | Resortion
Time
(hre) | F Decomp. | |--------|--|--------------------------------|----------------------------|----------------------------|-----------| | 160 | ME_01 | 25 | 250 | 24 | 36.7 | | | 111 01 | 25 | 300 | 24 | 97 | | | 111 461 | 25 | 230 | 24 | 5.9, 7.6 | | 262 | 1000 ₄ | 2\$ | 250 | 24 | 1.1 | | | Mado _A | 25 | 300 | 24 | 42.5,42.3 | | | 1000 ₄ | 25 | 230 | 24 | 0,0 | | 167 | None | 25 | 250 | 24 | • | | | | 25 | 300 | 24 | 0.8, 0.9 | | 030 | ■ V ₂ 0 ₅ | 25 | 250 | 18 | 0 | | tub | n ^{V20} 5
•• V205 | 25 | 250 | 21 | 0 | ## (f) Reproducibility and Experimental Error The reproducibility of the kinetic runs using KClO₃ as the oxidant was in general better than with KClO₄ as oxidant. The factors accounting for this are the greater stability of the KClO₃-compounded pellets and the more accurate control of temperature of reaction at lower temperatures as were used in the KClO₃ reactions. Table 12, page 42, shows that for two runs using NH₄Br as the added substance, the reproducibility was bad but Tables
12 and 13 show that all other duplicated runs were almost identical. Within any particular kinetic run the separate points fell on or very close to a straight line (Figure 3, page 45). #### II C Potassium Iodate as Oxidant #### (a) Effects of Catalysts Table 17, page 57, and Figure 5, page 59, show the nature and extent of the effects of added substances to the reaction between KIO₃ and pDVB. A smaller number of catalysts were tried, being mostly those which catalyzed the previous reactions strongly. Reactions were carried out under the same operating conditions as before but samples were made up in a ratio of 10 parts KIO₃ to 1 part pDVB by weight, for greater mechanical stability of the pellets and a closer parallel of the molar ratios. The catalyst to oxidant ratio remained 0.028 parts to one part oxidant by weight. The temperature chosen for the reaction was lower than for the KClO₄ reaction and higher than for the KClO₃ reaction, a consideration due to the relative speed of each reaction. The reaction was catalyzed up to 100 times the uncatalyzed rate by $MnSO_4$ and to lesser degrees by $CoSO_4$, $Al_2(SO_4)_3$ and NH_4Br , in descending order. As in the case of $KClO_3$, there exists a qualitative agreement in the effects of the various additives with their effects in the $KClO_4$ reaction. # (b) The kinetics and empirical rate law of the catalyzed KIO₃-pDVB reaction t The kinetic data gave a good fit to the empirical equation found for the KClO_4 oxidation of pDVB (Equation V). Therefore the same arguments hold for this reaction with regard to diffusion, mode of catalysis and interpretation of results. 74348 17 Effects of Catélysts KIO3:pDVB = 10:1 (w/w) Catalyst:KIO3 = 0.028:1 (w/w) Temp. - 325°C 1 | 11,18,19 | Hone | 0.01 * | |----------|---|-----------------------| | 20,21 | ne 4 p. | 0.085, 0.085 | | 22 | Fe ₂ (80 ₄) ₃ | 0.109 | | 17 | A1 ₂ (80 ₄) ₃ | 0.112 | | 15 | CoSO ₄ | 0.236 | | 16 | 160 4 | 0.743 | | Did Io. | Catalyst | k (hr ⁻¹) | ^{*}average of three experiments, giving individual rates 0.016, 0.007, 0.007 ## FIGURE 5 Typical Kinetic Curves for KIO3 - pDVB - catalyst mixtures @ 325°C KIO3:pDVB = 10:1 (w/w) catalyst:KIO3 = 0.028:1 (w/w) | Run No. | Symbol | Catalyst | |---------|----------|---| | 18 | • | Tone | | 19 | 0 | Yone | | 20 | 8 | nn ₄ Br | | 21 | ⊕ | vi ₄ Br | | 22 | Φ | Fe ₂ (SO ₄) ₃ | | 16 | • | MnS0 ₄ | | 15 | θ | coso ₄ | ## II D KBrO, as oxidant #### (a) Ignition times Table 18 page 61, shows a close agreement between the ignition times and the kinetic results for the same mixtures. The strong catalysts promoted rapid ignition and the inhibitors prevented ignition. The table shows that the reaction temperature used in the kinetic runs was below the ignition temperatures but for the strong catalysts the reaction temperatures and the ignition temperatures were very close. As the kinetic runs were performed in vacuum and the ignition temperatures were found for samples open to the atmosphere the influence of atmospheric oxygen is evident. #### (b) Effect of Catalysts; Kinetics and Rate Law. The empirical rate law of the catalyzed KBrO $_3$ -pDVB reaction was the same as for the KClO $_4$ and KlO $_3$ oxidations. Reactions were carried out under the same conditions, the temperature of reaction being the only change. This was lower than for the KClO₄ and KlO₃ oxidations because of the greater ease of KBrO₃ oxidation. Runs were made at 300° and at 275°, the lower temperatures for those catalysts which drove the reaction too quickly for a proper evaluation and the higher temperature for the less active catalysts. 21 250 | | | | | in i | 1 101 | | Imition Times (Seconds) (KBrO3 + pDVB + extalysts) | E) (XB | 9 + 1 | DVB + | etaly | et e | | | | | | | |----------------------|--------------|--------------|-----|------|-------|-----|--|--------|-----------------|-------|-------|-------------|----|-----|-------------|---|----|----| | iemple. | Catalyst | Tep. 3 + 260 | 260 | 270 | 280 | 230 | 295 | 8 | ž | â | ЗЗ | 8
M | ğ | 82 | 325 330 3.5 | 3 | 8 | 8 | | 25 | rio A | | | | | | | | | | | 50 | | 16 | | | | | | 16 | 20805. | | 240 | 46 | 52 | 41 | | 킀 | 53 | | | 23 | 22 | | | | 13 | | | 28 | ପ୍ର | | | | | 3 | | | 28 | | 24 | 5 | | 25 | | | | | | 7 . | ्र
स | | | | | | | 55 | \$ 3 | | | 56 | | 8 | بر:
با | | | 13 | | 54 | | | | | 240 | | \$ | 29 | | 28 | | 27 | | | , w | | | | | ;; | \$**
* | | | | | 240 | | | | 37 | | 28 | | | ,
P | 188 | 13 | | | ** | S | | | | | | | | | | | | | | 19 | | 13 | | | | ; | | | | | | | | | * | | 54 | | ಜ್ಞ | | , 198
2
2
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 26 | | | ?-
· • | ŧ, | | | | | | | | | | | 1 | | 28 | | | 3 | | | L)
me | , ≎0! | | | | | | | | | | | 113 | | 89 | | | 32 | | | 22 | 模 | | | | | | | | | | | 40 | | | | | | | | 5€ \$
#= 4 | ដ | | | | | | | | | | | 54 0 | | | | | | | | 23 | : (4) | | | | | | | | | | | | | 240 | | | | | H 140 30000 . . samples did not ignite in this time Table 19, page 63, and Figure 6, page 65, show that the catalysts which strongly or weakly catalyzed the KClO₄, KClO₃, KIO₃ reactions had a similar effect on the KBrO₃ oxidations. More specifically, MnSO₄, Al₂(SO₄)₃, CoSO₄, MnCl₂, Fe₂(SO₄)₃, NH₄Cl were powerful catalysts while alkali metal salts or bases or powdered metals were either weak catalysts or inhibitors. TABLE 19 # Mfeet of Catalrate KBr03:pDVB = 5:1 Catalys::KBr03 = 0.028:1 Temp. - 300°0 | Run No. | Catalyst | <u>k (hr⁻¹)</u> | |---------|---|----------------------------| | 18 | ne ₄ c1 | 7.98 | | 16 | CoSO ₄ | 7.40 | | 24 | M1204 - 6H20 | 6.8 | | 20,21 | A12(504)3 | 0.526, 0.526 | | 11,12 | V205 | 0.273, 0.273 | | 29 | 142804 | 0.23 | | 10 | Fone | 0.116 | | 17 | Dr | 0.115 | | 15 | KI | 0.082 | | 22 | Cu | 0.048 | | 23 | Ba ₂ CO ₃ | 0.006 | | | ● 275°C | | | 25,26 | MaC1 ₂ | 5.20, 5.20 | | 27,28 | 100 4 | 5.20, 5.20 | | 13,14 | Po ₂ (90 ₄) ₃ | 1.364, 1.364 | | 19 | A1, <0 _A), | 3 . 100 | # FIGURB 6 Typical Kinetic Curves for EBrO₃ - pDVB - estalyst mixtures ● 300°C EBr03:pDVB = 5:1 (w/w) eatalyst:EBr03 = 0.028:1 (w/w) | In Io. | Symbol | Catalyst | |--------|----------|---| | 10 | • | Fene | | 11 | 8 | • v ₂ o ₅ | | 12 | ⊕ | v₂° 5 | | 15 | | n | | 20 | • | A1 ₂ (80 ₄) ₃ | | 21 | 0 | A1 ₂ (80 ₄) ₃ | | 22 | • | Cus | | 23 | θ | Be ⁵ 00 ³ | | 24 | • | ¥180 ₄ | # II E Comparison of Effects of Catalysts on Oxidation of pDVB by KClO₄, KClO₃, KBrO₃ and KlO₃ The relative rates of reactions with different oxidants and the same catalyst (Tables 20, 21, pages 68, 69) show that the influence of the catalyst, with a few exceptions, lies in the same direction. There is no quantitative agreement, however, between the different rates. Several substances which did not greatly influence the rate of oxidation of pDVB by KClO₄ had a strong catalytic effect on the reaction with KClO₃, KlO₃ and KBrO₃. These were CoSO₄, MnCl₂, MnSO₄, NH₄Cl and NH₄Br. Substances which strongly inhibited one reaction had the same effect on the other reactions and substances which catalyzed the $\mathrm{KClO_4}$ -pDVB reaction also catalyzed the other reactions. The relative times of ignition using KClO₄, KClO₃ and KBrO₃ as oxidants with various catalysts (Table 22, page 70) show a closer agreement for the different oxidants and the same catalyst. Obviously, the solid-solid reaction rates and the ignition tests cannot be compared since in the latter case the reaction is strongly influenced by the presence of air. The substances used are in many cases catalysts for the air-oxidation reaction. (For example, in the oxidation of various forms of carbon by air it was found by Patai et al $^{(45, 46)}$ that bases were highly active catalysts by enhancing the breakdown of surface oxides which were formed on the substrates used). ## Activation Energy The values of the activation energy obtained for the catalyzed ${\rm KClO}_4$ -pDVB, ${\rm KClO}_3$ -pDVB and ${\rm KBrO}_3$ -pDVB reactions were respectively 43.0, 38.6 and 45.9 Kcal/mole with the catalysts ${\rm Fe}_2({\rm SO}_4)_3$, ${\rm CoSO}_4$ and ${\rm Al}_2({\rm SO}_4)_3$ the respective catalysts. These were calculated from the values given in Table 23. The respective values obtained for the uncatalyzed reactions* were 40.5, 45.4 and 43.1 K.cal. These values were obtained for ratios of KClO₄ to pDVB of 2.5:1 and of KClO₃ and KBrO₃ to pDVB of 6:1. ^{*} M. Albeck, private communication. TABLE 20 Relative Rates Oxidant and Reaction Temperature | Added | EC10, | KC | ¹⁰ 3 ~ | Koz | 0, | KIO3 | |---|-------|------|-------------------|------|-------|------| | Substance | 350°4 | 250° | 225°· | 300° | 275** | 225° | | Fone | 1 | 1 | - | 1 | | 1 | | Po ₂ (80 ₄) ₃ | 5.8 | 150 | 46 | - | 11.3 | 10 | | A1 ₂ (80 ₄) ₃ | 4.3 | 150 | 29 | 4.5 | 1 | 11 | | ₹2 05 | 3.0 | 150 | 5 | 2.4 | - | | | MaSO ₄ | 1.6 | 430 | 68 | _ | 4.5 | 74 | | ME ₄ Cl | 1.5 | | 200 | 69 | _ | | | W1804 | 1.3 | 37 | - | 59 | | - | | Major | 1.3 | | 230 | _ | 400 | 8.5 | | Br | 1 | | - | 1 | - | - | | ECI | 1 | | - | _ | _ | - | | Ce80 ₄ | 0.9 | 300 | 43 | 64 | _ | 24 | ^{&#}x27; Relative to non-eatal, and rate at 250° [&]quot; Relative to non-oatalysed rate at 300° TABLE 21 Relative Rates Oxidant + and Reaction Temperature | Added | KC10 | KC | 103 | KD: | ю, | |---------------------------------|------------------|------|------|---------------|-------------------| | Substance | 350 ⁶ | 250° | 225° | 300° | ³ 275° | | _ | _ | _ | | • | | | Hone | 1 | 1 | | 1 | - | |
Po | 1.2 | 3 | | | - | | 1601 ₂ | 1.0 | 1300 | 190 | | 4.5 | | A1 | 0.7 | 4.6 | | - | | | 142804 | 0.6 | 11 | - | 2.0 | - | | Meso4 | 0.5 | | | | - | | Ma ₂ 00 ₃ | 0.05 | 0 | | ა .005 | - | | Lion | 0.03 | 0 | - | - | _ | | Cu | | 1 | | 0.04 | - | ^{&#}x27; Relative to non-cate 'ysed rate at 300° [&]quot; Relative to non-catalysed rate at 250° TABLE 22 ## Comparison of Ignition Times # of Oxidant - pDVB - Catalyst Mixtures (Ratio of Ignition Time for Mixture to Time for Uncatalysed Mixture) | Catalyst | 1Br0
32003 | KC10
330 ⁶³ | #C10
460 ⁰⁴ | |---|---------------|---------------------------|---------------------------| | MmCl ₂ | 0.18 | 0.18 | 0.40 | | Co80 ₄ | 0.20 | 0.20 | 0.32 | | MinSO ₄ | 0.21 | 0.31 | 0.31 | | A1 ₂ (3) ₄) ₃ | 0.25 | 0.36 | 0.18 | | W180 ₄ | 0.25 | 0.44 | 0.42 | | V205 | 0.25 | 0.28 | | | Fe ₂ (80 ₄) ₃ | 0.25 | 0.27 | | | 142 ⁸⁰ 4 | 0.48 | >2 | 1 | | KBr | 0.65 | ••• | 1 | | Tone | : (113 secs.) | 1 (113 sees.) | 1 (115 secs.) | | Cu | ? | >2 | >2 | | KI | Ż | | 0.33 | | WagCO3 | , | > 2 | 0.77 | Arrhenius Plots for Activation Energy of Catalysed Oxidant - pDVB Reactions TABLE 23 | ▲• | KC104 | + | pDVB | + | Fe ₂ (8 | 10 ₄) ₃ | |-----------|-------|---|------|---|--------------------|--------------------------------| | | | | | | | | | | | | | | | | | Temp. (°C) | 1/T - abs. | k (hr ⁻¹) | ln k | |----------------------------------|--------------------------|-----------------------|----------------| | 250 | 1.91 × 10 ⁻³ | 0.003 | -5.81 | | 300 | 1.745×10^{-3} | 0.142 | -1.95 | | 350 | 1.605 × 10 ⁻³ | 1.0 | 0 | | 400 | 1.488 × 10 ⁻³ | 8.40 | 2.13 | | 225 KC10 ₃ + 1 | 2.01 × 10 ⁻³ | 2.86 | 1.05 | | 250 | 1.91 × 10 ⁻³ | 20.70 | 3.00 | | <u>c</u> . KBr0 ₃ + 1 | PDVB + F12(804)3 | | | | 300 | 1.745 x 10 ⁻³ | 0.526 | -0.642 | | 275 | 1.817 × 10 ⁻³ | 0.100 | -2.3 03 | #### II F Catalysis and Inhibition of Solid-Solid Reactions Impurities in solids undoubtedly affect their reactivity, sometimes to a marked degree, but impurity effects on the reaction between two solids have not been studied intensively because of the inherent experimental difficulties. The addition of substances to accelerate solid-solid reactions is common in practical applications but most of these additives are materials which reduce the eutectic temperature in the mixture and thus in most cases probably introduce a small amount of liquid phase. In the present work the effect of additives on the solid-solid reaction between an oxidant and a substrate was studied. The effects of these additives must be viewed in the light of previous mechanisms proposed for reactions between solids. Thus, in order to arrive at an understanding of the effect of catalysts on the reaction it is necessary to clarify what the normal course of the reaction would be and what change, if any, the added substance will have on this mechanism. The most comprehensive theories proposed for solid-solid reactions have been based on studies of the simplest systems available, viz., the thermal decomposition of solids. Macdonald (34) interprets the thermal decomposition of silver oxalate as follows: the reaction starts from a fixed number of nuclei, which depends on the history of the sample. From there it spreads in two dimensions across the planes of the crystal. These planes of reaction may branch and they usually do so from the initiating spot on the edge or corner of the crystal, since this possesses considerable excess energy due to its special position on the crystal surface. When paraffin or certain ether substances are adsorbed on the surface, however, this excess energy is removed. The reaction is thereby greatly retarded, and proceeds by the spontaneous generation of fresh planes at the edges of the spent reaction planes. Prout and Tompkins theory, based on the thermal decomposition of KMnO₄, is the most generally accepted mechanism for decompositions of solids. This theory stresses the importance of branching during reaction caused by the covering of the surface by product molecules and takes into account the effects of interference on the branching process. The formation of product molecules is thought to induce strain in the crystal, owing to molecular volume changes, producing cracks and thus forming fresh surfaces on which decomposition can occur. This theory closely resembles that of nucleation of Garner and others (9-11) whereby reaction occurs in favourable regions, where the molecules exist in a state of comparatively higher energy levels, and therefore the activation energy will be lower. In general, the surface array of product molecules will have a different unit cell from that of the original substance and this sets up strains in the crystal surface which are relieved by the formation of cracks. At the mouths of these cracks the reaction will be enhanced by lattice imperfections and spread down these crevices into the crystal. Decomposition on these surfaces produces further strains and cracking, thus developing a type of chain branching process. The mechanism proposed by Glasner and Weidenfeld⁽¹⁸⁾ for the thermal decomposition of potassium perchlorate is based on a similar branching chain concept. The diffusion of oxygen after dislocation from the perchlorate ions is stated to be the rate limiting step. All the above mechanisms are based on the original concepts of Schottky and of Frenkel (11, 19, 62) whereby movement of ions and electrons in solid ionic compounds is possible if there are deviations from the strict order of an ideal lattice. Reactions between solids require diffusion processes in the layers of the reaction products occurring by the movement of ions and electrons. The Schottky concept, which probably applies to the present work, is of vacant anion and cation sites in the lattice. These vacancies can migrate through the lattice by a diffusion mechanism. In a consideration of the mechanism of catalysis by a solid of a solid-solid reaction the following factors should be considered: - (1) Any impurity incorporated into the crystal lattice, will, as a rule, be unable to arrange itself in the original lattice structure of the pure substance. Hence it will give rise to lattice imperfections such as vacancies or excess ions or both. - (2) Ions move from normal lattice positions into adjacent vacant sites eliminating the original holes and creating new holes. Similarly excess ions, being also lattice defects, give rise to ionic interchanges in the structure. - (3) The electronic structure of a solid as well as its ionic properties are connected with its catalytic activity. - (4) During the decomposition of a substance, products may be formed which may catalyze or inhibit the further reaction. The absence of autocatalysis in the reaction between KClO₄ and pDVB is shown by the reaction curve having no initiation period, i. e. it is not sigmoidal. Thus the KCl formed in the reaction does not catalyze the further reaction of KClO₄. The addition of KCl also does not change the rate of reaction from that of the uncatalyzed reaction. In the thermal decomposition of KClO₄, Glasner and Weidenfeld⁽¹⁸⁾ found that pure perchlorate evolved oxygen according to a sigmoid reaction curve and that added chloride reduced or eliminated the induction period. Glasner and Weidenfeld also investigated the influence of KCl derived from a decomposition of KClO₄ as compared with heat-treated KCl and ordinary KCl on the thermal decomposition of potassium chlorate. The various species of KCl affected the course of the reaction, the first two types increasing the rate of formation of perchlorate considerably. They attribute this effect to the ability of the treated KCl to absorb oxygen from the decomposing KClO₂ and to form perchlorate. In the case of perchlorate formation from KCl which originated from perchlorate the phenomenon is suggested to be a "memory" effect. That is to say, a substance such as KC1, obtained from KC1O4 by removal of oxygen atoms "remembers" its original crystal structure and reacts as a reducing agent in contact with substances which provide oxygen for filling out its lattice vacancies. The same "memory effect' was postulated by Weyl and Förland (64) for Ti₂O₃ formed by decomposition of TiO₂ and for BaO formed from the decomposition of ${\rm BaO_2}$ etc., where the ${\rm Ti}_2{\rm O}_3$ and the BaO are much more reactive towards oxygen if they have been formed by the decomposition of the higher oxide, i.e., they "remember" their previous structure and return to it easily. In the present work the reaction between KClO₃ or KClO₄ and pDVB sometimes went to 100% KCl in the presence of a suitable catalyst. This shows that the transfer of oxygen from one part of the reacting mass to another, i.e. to the pDVB must be rather facile and the product KCl formed is not an effective barrier. This may be due to a memory effect of the product lattice allowing easy diffusion of oxygen. On the other hand, KCl is not a catalyst, as shown by experiments using initially added KCl up to 2%. Therefore a balancing of two opposing effects, i.e. a "chemical" catalysis by KCl as opposed to a "physical" inhibition by the same substance as a barrier, is not tenable. A possible mechanism that explains the phenomenon of catalysis or inhibition in a solid-solid reaction can be inferred from the work of Marshall, Enright and Weyl (35) on the influence of lattice defects in changing the rate of material transport through the bulk of a crystal. To demonstrate this influence they chose zinc oxide as the parent crystal and introduced various ions into the zinc oxide lattice. When Ga³⁺ ions were used the formation of Zn⁺ ions takes place without producing anion vacancies. The crystal thus formed has the same electronic properties as the defective crystal which contains anion vacancies, but its lattice sites remain occupied. As a result, the material transport which
leads to recrystellization and sintering is delayed. They found that the same reasoning is valid for the reverse process, namely, causing the rate of material transport to be increased. For example, the substitution of Li⁺ ions for Zn²⁺ ions in the zinc oxide lattice causes the electronic conductivity to be descreased sharply and the rate of material transport to be increased. Li⁺ ions occupying normal Zn²⁺ ion sites in the lattice required that some ions leave the structure in order to maintain electrical neutrality. Thus the number of anion vacancies increases and consequently the rate of material transport also increases. Such a concept may explain some but not all of the effects of the catalysts used in the oxidant-pDVB reactions in the present work. The catalytic effect of highly dissociated substances could be due to the relative ease with which they enter the oxidant crystal lattice and affect the diffusion of the reacting particles. Dissociable substances which neither inhibited nor catalyzed were of the same structural type as the oxidant, e.g., KBr, KCl, KI. Other substances which neither catalyzed nor inhibited were those which were very unlikely to enter the crystal lattice of the oxidant under the experimental conditions, namely the metal powders and water-insoluble oxides. Some of the inhibition effects of various substances may be due to pure physical blocking of diffusion. It is possible that some of the soluble oxides are easily incorporated into the oxidant lattice during the "wetting" step of the tablet preparation. This effect would not operate with water insoluble or very slightly soluble compounds. The only other obvious differentiation between catalysts and inhibitors occurred with acid and basic substances. It is very likely that the same mechanism of crystal lattice infiltration takes place and that the subsequent effects are due to the specific influence of acids and bases as electrophilic and nucleophilic substances on the potentially reactable particles. It would be difficult to ascertain which mechanism of acid catalysis applies in such a complex mechanism as studied here, although some clues may be found in other work: According to a series of papers by Lyons $^{(33)}$ the photoconductivity of various organic solids involves the movement of negative oxygen ions, O or O_2 on the surface of these solids. It is conceivable that in the present case the actual material transport of oxygen also takes place in the form of O or O_2 ions. If this is the case, the presence of Lewis acids may catalyze the oxidation by the formation of intermediates, e.g. $O_n^- + A - AO_n^- - pDVB \text{ products}$ The inhibition by basic (nucleophilic) substances does not necessarily involve the converse of this mechanism, although it is reasonable to assume that nucleophilic substances would form an effective electrostatic barrier to the movement of negatively charged ions. A further possibility, the decomposition of perchlorates by acids with the formation of chlorine peroxide or perchloric acid, which are more reactive than perchlorates or chlorates, is ruled out by the fact that in the absence of p-DVB, mixtures of perchlorate or chlorate and the acidic catalysts were quite stable. The formation of either chlorine peroxide or perchloric acid would necessarily lead to oxygen and/or chlorine evolution at the temperatures at which our experiments were conducted, whereas the experiments showed unequivocally that no such decomposition took place. Inhibition or negative catalysis is a phenomenon quite common in reactions in solution. Most theories which were advanced to explain it proceed on the basis that the inhibitor intervenes at some stage in the original course of the reaction, i.e., it traps one of the necessary reactive intermediates, making the reaction more difficult or impracticable. From the standpoint of the theory of reactions taking place by intermediate stages it can be assumed that some particular link in the reaction, whether it be a catalyst, or one of the reactants, or an intermediate, is wholly or partly removed by the fermation of an inert compound (54). In the case of reactions which occur without the aid of catalysts the simplest assumption is that the reactive form or an active intermediate state of one of the reactants or of an intermediate compound is removed by the negative catalyst. The solid-solid reaction between pDVB and the oxidant has been postulated above to occur between pDVB and molecular or atomic or negatively charged oxygen, promoted by ion vacancies and crystal strains and cracks. The presence of inhibitors may also influence the reaction by deactivation of the reactive and mobile form of oxygen. Thus if a metal were the added substance it might either strongly absorb the oxygen on its surface or form a difficultly reducible oxide. Even if higher oxide3 were formed in some cases these may still be unreactive enough to inhibit the reaction. It is impossible to assign a unified hypothesis for catalysis and inhibition on the basis of our experiments. Rather, it is probable that several mechanisms exist, for both catalysis and inhibition, and these may be physical and chemical in nature with various added substances. The above mentioned generalizations may be valid for a restricted group of cases only. #### **EXPERIMENTAL** #### (1) Materials used: The oxidizing agents $(KClO_4, KClO_3, KBrO_3, KlO_3, KNO_3, SeO_2$ and chloranil) and the various additives used $(V_2O_5, Fe_2(SO_4)_3, LiCl, Cr_2O_3, Al_2(SO_4)_3, MnO_2, etc.)$ were of the highest available analytical grades. The organic substrates used were generally purified commercial compounds (chrysene, anthracene, oxamide, dicyclohexylamine). Cyclohexylcarboxylic acid was prepared by Grignard reaction of cyclohexylchloride (13). #### Preparation of polymers: Poly-divinylbenzene-ithylstipene copolymer, ("pDVB"), was prepared by polymerization of a commercial mixture (Light & Co.) consisting of about 40% divinylbenzene and 60% ethyl styrene. This was heated with 0.4% of benzoylperoxide for 24 hours at 60°C, for another 24 hours at 70°C and finally for 24 hours at 90°C. The resulting light yellow, brittle copolymer decomposed without melting at about 450-470°C. Cinnamalfluorene was polymerized at 240-250°C in a sealed tube for three days^(60, 65). After extraction of the benzene-soluble fraction, the residue (10% yield) melted at 360°C. Decacyclene⁽⁵¹⁾ was prepared from acenaphthene; it melted above 360°C. Polymers were also prepared from indene, vinyl naphthalene and from styrene-DVB mixtures, but were unsatisfactory for our purposes. #### (2) Preparation of samples The reactants and the catalysts were ground finely and sieved. The material passing the 100 mesh sieve (U.S. Standard Sieves) and retained by the 200 mesh sieve was used in nearly all the experiments. The oxidant and substrate in the chosen ratio were thoroughly mixed and then further mixed with a quantity of catalyst in a fixed catalyst to oxidant ratio. Pellets of 10 mm diameter and weighing between 15°C and 250 mg were pressed from the slightly wetted mixtures at 6000 lb/sq in. The pellets were dried at 120° for about 24 hours, cooled in a desiccator, weighed and placed in glass tubes which were evacuated to approximately 10⁻⁴ mm and sealed in situ. In the preliminary experiments, tablets were of a larger size (15 mm diameter, 1 gm weight) and heated in tubes sealed at atmospheric pressure. The tablets were in nearly all cases quite stable mechanically, especially after drying. #### (3) Apparatus Pellets were pressed in a three-part steel die ef 10 mm inside diameter under a Carver Laboratory Press. A mercury diffusion pump was used for evacuation and degassing of the samples. Reactions were carried out in an electrically heated furnace regulated by a Fisher Pyrometer Controller to $^+5^{\circ}$ C. The furnace had a capacity of nine samples placed in nine holes drilled in a circle in a brass block which was surrounded by the heating element. The temperature variation between the holes was less than 2° C. The glass tubes containing the samples were of 10.5 mm inside diameter and about 11 cm in length. These were placed simultaneously in the furnace in thin-walled brass tubes with wire handles. The brass tubes were slightly larger than the glass ampoules and slightly smaller than the furnace holes. A lid, insulated in the same manner as the furnace, covered the top of the furnace and the whole apparatus was surrounded by a metal shield. Adequate safety precautions were observed throughout the work. ## Apparatus for determining ignition temperatures Ignition temperatures were determined by dropping samples into open pre-heated test-tubes in the same furnace as described above and measuring the ignition time with a stopwatch. The samples were observed in a conveniently-placed mirror. #### (4) Kinetic runs The pellets in the evacuated and sealed tubes were placed in the pre-heated furnace at the desired temperature of reaction and removed after the desired time interval, allowed to cool, opened and analysed to determine the percentage reaction. In this way the percentage reaction of a particular mixture was found for various periods of heating, generally from 1 to 24 hours and the nine results for each:run were plotted time vs. ** reaction (see Table 24 for typical results). KClO₄ and KClO₃ oxidations were followed analytically by the Volhard method of chloride analysis. KBrO₃ and KIO₃ oxidations were analysed iodometrically by determining the amount of KBrO₃ or KIO₃ in the residue. Other experiments were carried out to determine the decomposition of the substrate without oxidants or catalysts, and without catalysts; the decomposition of the oxidant with the catalyst (absence of substrate); the analysis of the organic products of the catalyzed oxidation of the substrate; the decomposition of the oxidant without catalyst or substrate. These
experiments were carried out under identical conditions in the processing of the samples. In the oxidation of polycyclic compounds the organic products were analysed spectrophotometrically and the inorganic ones volumetrically to see whether changes in the organic substrate corresponded to changes in the inorganic or organic oxidant. #### (5) Calculations #### (a) Kinetics The percentage of reaction was calculated from the amount of halide formed in the decomposition of the oxidant. The percentages of reaction were plotted against time of reaction and the values of t for percentages of reaction of 5, 10 60% tabulated. These values of t were used to obtain the value of the rate constant, k, from the tabulated values of kt corresponding to the appropriate empirical rate equation. The dimension of the rate constant is therefore $\begin{bmatrix} time & -1 \end{bmatrix}$ since the concentration terms being mole per mole are dimensionless. Values of kt were calculated for empirical rate equations of the general form: $$dx/dt = k(a-x)/x^n$$ for various values of n. The above differential equation was expanded into the geometrical series: $$kdt = \frac{x^{n}}{a} \left[1 + \frac{x}{a} + \left(\frac{x}{a}\right)^{2} + \left(\frac{x}{a}\right)^{3} + \dots \right] dx$$ and integrated for various values of n. ### (b) Activation Energy Activation energy was calculated from the plot of $\frac{1}{Tabs}$ vs ln k from the Arrhenius equation: $$\ln k = \ln A - E_{/RT}$$ which gives a line of slope $E_{/R}$ whence E can be determined. Trained Cinetic Ame With Martwee of Grident - 1878 - Add Sebatoms | | | | | | | | | ~ | S bustles | ş | | | | | | | | | | | | | |----------|----------|--------------------------|-----------------|------------------|---|-------|---------------------|---------------|------------|-------------------------|---|----------|------------|----------|-----|-----|-------|-----------|------|-----|------|------| | Ren No. | į | Ren No. Temp. W Griddent | V Caralyst | †
;; | 1 | 0.5 1 | | ~ | ~ | • | 3 4 5 6 7 8 9 10 15 16 23 24 25 28.5 40 | • | • | 6 | ន | ä | 22 | 23 | * | 8 | 26.5 | \$ [| | 1 | 93 | | . ac. a | - | | | 5.36 3.06 3.01.3 | | 15. | 8 | 21.0 | | 79.7 | • | 7.8 | • | 4.4 | | 4. 2 | | | | | 1 | Š | 300 > 2001 | 0.00c | 1,3 | | | | | | • | ì | | , | • | Ì | • | | | • | | | | | * | • | • | 0.0244 | | | | 2.3 5.1 | 5.1 | | 6:3 | Á | 7.6 | | ŏ | 9.0 | | 15.9 | 15.9 17.8 | _ | | | 777 | | ğ | • | • | 0.0236403 | | | | 9 | | 3.1 | • | 4.1 | • | 6.2 | | ř | 1.8 | 10.7 | | 12.2 | | 13-2 | | | 3 | | | 0.028702(804)3 | 1,3 | | | 12.8 | | 50.9 | • | 30.9 | × | 32.1 | % | • | | 4.5 | •- | 4.6 | | | | | ‡ | | 225° 5KG101 | 0.02841, (304), | Ž | | 0.2 | 0.2 1.7 | 2.8 | w. | 5.2 1 | 2.6 3.8 5.2 10.1 15.4 | * | 16.7 | • | | | 25.2 | | | | | | | 0
4% | • | • | 0.6287, (804)3 | , <u>, , , ,</u> | | 6:0 | 2.5 | 5.5 | 7. | 12.3 1 | 0.9 2.5 5.5 9.2 12.3 14.4 18.1 | 7 | 24.3 | ű | | | 4.6.6 | - | | | | | | 2 | ,
000 | 300° 500k-03 | 0.023AL. (80.) | م
ج
هد | | | 17.3 13.2 26.8 31.5 | 13.2 | 3 | Z-12 | × | 9-17 1-A | . . | 2.6 | • | | 2 | _ | 7.15 | | | | | n | • | • | \$0-49200 | • | | | * | 17.0 | 19.5 | 8.4 17.0 18.5 26.9 24.3 | ¥.3 | | D.d | ó | | 4.4 | • | | 8. | _ | | | | 200 | R | est ones | 0.028Mil. Br | | | | 4 | 4.8 11.5 11.9 | 11.9 | - | 12.2 | Ħ | 19.5 | 17.1 | 7 | | 2.0 | _ | 3.6 | | | | | n
I | • | • | 0.028880 | | | | 13.6 19.9 | 19.9 | | 23.3 | * | 7 % | | 7 3 | 7 | | ¥.K | | | 4.5 | | | #### REFERENCES - Bircumshaw, L.L. and Phillips, T.R., J. Chem. Soc., 142, 703 (1953). - 2. Borchardt, H.J., J. Am. Chem. Soc., 81, 1529 (1959). - 3. Cohn, G., Chem. Revs., 42, 527 (1948). - Crespi, I.M. and Caamaño, J.L.G., Anales soc. españ. fis. quim., 34, 320 (1936); Chem. Abstr., 30, 4744 (1936). - 5. De Bruijn, H., Disc. Farad. Soc., 8, 69 (1950). - Elliott, M.A., U.S. Bur. Min., Rep. Invest. No. 4244 (1948); Chem. Abstr., 42, 3179 (1948). - Faraday, M. and Stodart, J., Quart. J. Sci., 9, 319 (1820). - Fukushima, S. and Horibe, Y., Catalyst (Japan), No. 9, 44-52 (1953); Chem. Abstr., 48, 1786 (1954). - 9. Garner, W.E., J. Chem. Soc., 1961 (1952). - 10. Garner, W.E., Trans. Farad. Soc., 34, 940 (1938). - 11. Garner, W.E., Chemistry of the Solid State, Butterworths, London, 1955. - Garner, W.E. and Hailes, H.R., Proc. Roy. Soc. London, A, 139, 576 (1933). - Gilman, H. and Zoellner, E.A., J. Am. Chem. Soc., 53, 1945 (1931). - Ginstling, A.M., J. App. Chem. U.S.S.R. <u>24</u>, 629 (1951); Chem. Abstr., <u>46</u>, 7841 (1952). - Ginstling, A.M. and Fradkina, T.P., ibid, <u>25</u>, 1199, 1325 (1952); Chem. Abstr. 48, 9794 (1954). - Glasner, A. and Simchen, A.E., Bull. Soc. chim., 18, 233 (1951). - 17. Glasner, A. and Simchen, A.E., Bull. Soc. chim., 128 (1953). - Glasner, A., and Weidenfeld, L., J Am. Chem. Soc., 74, 2464 (1952); idem., ibid, 74, 2467 (1952). - Gray, T.J., The Defect Solid State, 1957, Interscience Publishers Inc., New York. - Harvey, A.E., Edmison, M.T., Jones, E.D., Seybert, R.A., Catto, K.A., J.Am. Chem. Soc., 76, 3270 (1954). - 21. Harvey, A.E., Wassink, C.J., Rodgers, T.A., Stern, K.H., Annals N.Y. Acad. Sci., 79, 971 (1960). - Hauffe, K., Dechema Monograph <u>26</u>, 301 (1956); Chem. Abstr., 51, 7124. - 23. Hedvall, J.A., Trans. Chalmers Univ. Tech., 233 (1961). - Hedvall, J.A., Einfuhrung in die Festkorperchemie Friedr. Vieweg, Braunschweig, 1952, p169ff., p257ff. - Heertjes, P. M. and Houtmann, J. P. W., Chem. Weekbl., 38, 85 (1941); C.A., 36, 5349 (1942). - 26. Heinrich, F., Forstarchiv, 16, 189 (1940); Chem. Abstr., 36, 2146 (1942). - 27. Hoffmann, E. and Patai, S., J. Chem. Soc., 1797 (1955). - 28. Hofmann, K.A. and Marin, P.H., Sitzber. preuss. Akad. Wiss. Physik-math. Klasse, 448 (1932); Chem. Abstr., 27, 1264 (1933). - 29. Jander, W., Z. anorg Chem., 163, 1 (1927). - 30. idem, ibid 166, 31 (1927). - 31. Jost, W., Trans. Farad. Soc., 34, 860 (1938). - 32. Kendall, J. and Fuchs, F.J., J. Am. Chem. Soc., 43, 2017 (1921). - Lyons, L.E. (et al), J. Chem. Soc., 1728, 1734 (1955). 3648, 3661, 5001 (1957). - 34. Macdonald, J.Y., J. Chem. Soc., 839 (1936). - Marshall, P.A., Enright, D.P. and Weyl, W.A., Proc. Int. Sym. Reactivity of Solids, Gothenburg, 1, 273 (1952). - 36. Marvin, G.S., and Woolaver, L.B., Ind. Eng. Chem., Anal. Ed., 17, 474 (1945). - 37. Otto, C.E., and Fry, H.S., J. Am. Chem. Soc., 46, 269 (1921). - 38. Parry, R.W., and Comings, E.W., Ind. and Eng. Chem. 42, 557 (1950); 42, 560 (1950). - Patai, S., and Freitag, N., Bull. Res. Counc. Israel, No 1, Vol IV (1954). - 40. Patai, S., and Hoffmann, E., J. Appl. Chem., 2, 8 (1952). - 41. Patai, S., and Rajbenbach, L., J. Am. Chem. Soc., <u>73</u>, 862 (1951). - Patai, S., and Rajbenbach, L., Bull. Res. Counc. of Israel, No 1-2, 46 (1953). - 43. Patai, S., Hoffmann, E., and Rajbenbach, L., ibid, No 3, vol II (1952). - 44. Patai, S., and Hoffmann, E., J. Am. Chem. Soc., <u>72</u>, 5098 (1950). - Patai, S., Hoffmann, E., and Rajbenbach, L., J. App. Chem. 2, 306 (1952). - 46. idem, ibid, 2, 311 (1952). - Pozin, M. E., and Ginstling, A. M., J. App. Chem. U.S.S.R., 26, 523-8 (1953) (Eng. transl.); Chem. Abstr., 48, 9136g (1954). - 48. Pozin, M.E., Ginstling, A.M. and Pechkovsky, V.V., ibid. 27, 355-8 (1954); Chem. Abstr., 48, 13319i (1954). - 49. idem, ibid, 27, 261, 404 (1954); C.A. 48, 9776f (1954). - 50. Prout, E.G. and Tompkins, F.C., Trans. Far. Soc., 40, 488 (1944). - Rieche, A., and Schiedt, B., Ger. Pat., 693, 862 (Chem. Abstr., 35, 4784). - 52. Schneider, W., Z. ges. Schiess. u. Sprengstoffw. Nitrocellulose, 38, 147 (1943). - Schroder, W., FIAT Review, Inorg. Chem., part V, pp 149-51. - 54. Schwab, G.-M., Taylor, H.S., and Spence, R., Catalysis, D. Van Nostrand Co., Inc., N.Y., 1937. - 55. Spice, J.E., and Staveley, L.A.K., J. Soc. Chem. Ind., 68, 313 (1949). - 56. Spring, W., Bull. soc. Chim., 44, 166 (1885). - 57. Tammann, G., Z. anorg. Chem., 149, 21 (1925). - 58. idem., ibid, 111, 78 (1920). - 59. Taradoire, F., Documentation Sci., 6, 232-7 (1937); Chem. Abstr., 32, 1455 (1938). - 60. Thiele, J., and Henle, F., Ann. 347, 304 (1900). - Vanden Bosch, A., and Aten, A. H. W., J. Am. Chem. Soc. 75, 3835 (1953). - 62. Wagner, C., Trans. Far. Soc., 34, 851 (1938). - 63. Wagner, C., J. Chem. Phys. 18, 1227 (1950). - Weyl, W.A., and Förland, T., Ind. and Eng. Chem., 42, 257 (1950). - 65. Whitby, G.S., and Katz, M., J. Am. Chem. Soc., 50, 1160 (1928). ASTIA NO. Contract No: AF 61(052)-143 United States Air Force, Air Research and Development Command, European Office, Technical Report No: 2 Solid State Chemical Reactions by S. Patai and H. Cross date July 1961 93 pages with 6 figures. The Hebrew University, Jerusalem, Israel. in the solid state between inorganic oxidants and polydivinylbenzene cross-linked polymers in the presence of catalysts and discussion of kinetic results and effects of catalysts and inhibitors. ASTIA NO. Contract No: AF 61(052)-143 United States Air Force, Air Research and Development Command, European Office, Brussels, Belgium Technical Report No: 2 Solid State Chemical Reactions by S. Patai and H. Cross date July 1961 93 pages with 6 figures. The Hebrew University, Jerusalem, Israel. ABSTRACT: Investigation of oxidation reactions in the solid state between inorganic oxidants and polydivinylbenzene cross-linked polymers in the presence of catalysts and discussion of kinetic results and effects of catalysts and inhibitors. Contract No: AF 61(052)-143 United States Air Force, Air Research and Development Command, European Office, Brussels, Belgium Technical Report No: 2 Solid State Chemical Reactions by S. Patai and H. Cross date July 1961 93 pages with 6 figures The Hebrew University, Jerusalem, Israel. ABSTRACT: Investigation of oxidation reactions in the solid state between inorganic oxidants and polydivinylbenzene cross-linked polymers in the presence of catalysts and discussion of kinetic results and
effects of catalysts and inhibitors. t Brussels, Belgium ABSTRACT: Investigation of oxidation reactions ASTIA NO. Contract No: AF 61(052)-143 United States Air Force, Air Research and Development Command, European Office, Technical Report No: 2 Brussels, Belgium by S. Patai and H. Cross Solid State Chemical Reactions 93 pages with 6 figures date July 1961 The Hebrew University, Jerusalem, Israel. ABSTRACT: Investigation of oxidation reactions in the solid state between inorganic oxidants and polydivinylbenzene cross-linked polymers in the presence of catalysts and discussion of Idnetic results and effects of catalysts and inhibitors.